
Assessing the Effect of Data Transformations on Test Suite
Compilation

Panagiotis Stratis
School of Informatics

University of Edinburgh, UK
s1329012@sms.ed.ac.uk

Vanya Yaneva
School of Informatics

University of Edinburgh, UK
vanya.yaneva@ed.ac.uk

Ajitha Rajan
School of Informatics

University of Edinburgh, UK
arajan@ed.ac.uk

ABSTRACT
Background. The requirements and responsibilities assumed by
software has increasingly rendered it to be large and complex. Test-
ing to ensure that software meets all its requirements and is free
from failures is a difficult and time-consuming task that necessitates
the use of large test suites, containing many tests. Large test suites
result in a corresponding increase in the size of the test code that
sets up, exercises and verifies the tests. Time needed to compile and
optimise the test code becomes prohibitive for large test code sizes.
Aims. In this paper we demonstrate for the first time optimisations
to speedup compilation of test code. Reducing the compilation time of
test code for large and complex systems will allow additional tests
to be compiled and executed, while also enabling more frequent
and rigorous testing.
Methods. We propose transformations that reduce the number of
instructions in the test code, which in turn reduces compilation
time. Using two well known compilers, GCC and Clang, we conduct
empirical evaluations using subject programs from industry stan-
dard benchmarks and an industry provided program. We evaluate
compilation speedup, execution time, scalability and correctness of
the proposed test code transformation.
Results.Our approach resulted in significant compilation speedups
in the range of 1.3× to 69×. Execution of the test code was just as
fast with our transformation when compared to the original while
also preserving correctness of execution. Finally, our experiments
show that the gains in compilation time allow significantly more
tests to be included in a single binary, improving scalability of test
code compilation.
Conclusions. The proposed transformation results in faster test
code compilation for all the programs in our experiment, with more
significant speedups for larger case studies and larger numbers of
tests. As systems getmore complex requiring frequent and extensive
testing, we believe our approach provides a safe and efficient means
of compiling test code.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; Compilers; Software testing and debugging;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEM ’18, October 11–12, 2018, Oulu, Finland
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5823-1/18/10. . . $15.00
https://doi.org/10.1145/3239235.3240499

KEYWORDS
Data Transformations, Testing, Compilers

ACM Reference Format:
Panagiotis Stratis, Vanya Yaneva, and Ajitha Rajan. 2018. Assessing the
Effect of Data Transformations on Test Suite Compilation. In ACM / IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement
(ESEM) (ESEM ’18), October 11–12, 2018, Oulu, Finland. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3239235.3240499

1 INTRODUCTION
As the scale and complexity of software increases, the number
of tests needed for effective validation becomes extremely large,
slowing down development, hindering programmer productivity,
and ultimately making development costly [30, 31]. The need for
large numbers of tests is magnified in agile software development
practices, like Continuous Integration (CI) and Test-Driven Devel-
opment (TDD), that require extensive testing to be performed [2,
10, 14].

Software companies are able to confirm this observation. Google,
who use CI development for their products, report a need for run-
ning more than 100 million tests per day [23]. Microsoft report
that testing code changes is time consuming and annual cost of
regression testing exceeds tens of millions of dollars [13]. Codeplay
Software [32], who develop specialised tools, including compilers,
runtimes and debuggers for heterogenous sytems, use CI for their
development, which necessitates frequent compilation and running
of large numbers of tests, taking huge amounts of time.

Large test code size. Developing andmaintaining the large num-
ber of tests needed when testing industrial software is facilitated
by test tools and frameworks. Test code is a piece of code written in
a regular programming language, like Java or C++, that is executed
on the system under test (SUT) for the purpose of testing the SUT
and observing its behaviour. According to Yousifouglu et al. [40],
test code for a given test usually includes four distinct steps that
are executed in sequence:

(1) Setup: Setup the test fixture with the desired inputs, environ-
ment values, and a means to observe the actual outcome.

(2) Exercise: Exercise the SUT with the test.
(3) Verify: Determine if the test passes or fails by checking if the

actual outputs from the SUT match expectations.
(4) Teardown: Tear down the test fixture and restore the state of

the SUT and environment.
With increasing numbers of tests, the size of the test code becomes
very large and according to Microsoft [28], “A tremendous amount
of coding effort goes into writing test code”. This is often encountered
in TDD and CI developments, where test code can be larger than
program source code [2].

1

https://doi.org/10.1145/3239235.3240499
https://doi.org/10.1145/3239235.3240499

ESEM ’18, October 11–12, 2018, Oulu, Finland Panagiotis Stratis, Vanya Yaneva, and Ajitha Rajan

Large test code sizes are difficult to maintain and require frequent
compilation. Compiling large pieces of test code is extremely time
consuming and severely hinders productivity, as the programmer
needs to wait each time he/she wishes to compile and test. Codeplay
Software confirm this observationwith their testers facing longwait
times for test code compilation. In general, it is highly recommended
that build or compilation times should be short enough to keep
developers focused on the current task, so as to prevent context
switching. This is especially important in CI development where
tests are compiled and run many times a day, so that even small
periods of waiting can add up to significant disruption. This issue is
further pronounced in languages like C++ which are known for its
long compilation times [22]. However, there has been no existing
work that addresses the problem of prolonged compilation times
for large test code. Existing work on compiler optimisation focuses
on generating efficient machine level instructions from program
source code for fast execution. These optimisations can also be
applied to test code for fast execution, but not for fast compilation.
In fact, these optimisations incur further overhead in compilation
times. We target the problem of long compilation times associated
with large test codes and aim to achieve significant speedups in
compilation, with optimisations that specifically target structure
and input data in test code.

1.1 Contributions
In this paper, we present a novel approach to speedup compilation
of test code and empirically assess its benefits. We propose transfor-
mations that restructure test inputs and reduce the number of calls
to functions being tested in the test code. Number of instructions
in test code reduces significantly with these transformations. We
empirically evaluate the effect of the proposed data transforma-
tions on test code compilation using two popular C compilers -
GCC [11] and Clang [24], enabling all their optimisations. We used
industry standard benchmarks – applications from the automotive
and telecom domains of the EEMBC benchmark suite [29] for em-
bedded systems, and compute intensive performance benchmarks
from SPEC [7]. We also used an industrial application developed
by Codeplay Software – ComputeCPP [6] enables acceleration of
C++ applications on heterogeneous compute systems using the
SYCL [12] open standard. Tests for this application were developed
by Codeplay developers as part of test driven development. We
evaluate compilation speedup, execution time, correctness and scal-
ability after applying the proposed data transformations on these
benchmarks.

Our approach resulted in significant compilation speedups in
the range of 1.3× to 69×. Statistical analysis of the results revealed
that our transformation resulted in compilation speedups with both
GCC and Clang over all subject programs at 5% significance level.
Speeding up the compilation time with the proposed transforma-
tions did not negatively impact the execution time of test code.
Execution for the Codeplay application is, in fact, faster than the
original test code compiled with fully enabled optimisations. We
also confirmed that the transformations maintained correctness
with respect to results of the test executions, and enabled compila-
tion of large test suites (>1 million tests) that would otherwise not
have been possible.

The rest of this paper is organized as follows. Section 2 discusses
background and related work. Section 3 presents our approach for

reducing compilation time of test code. Our experimental method-
ology is described in Section 4. Section 5 presents the results from
our experiments. Section 6 discusses the threats to validity in our
experiment and finally, Section 7 concludes.

2 BACKGROUND AND RELATEDWORK
Compiler optimizations [1] consist of transformation algorithms
that produce a semantically equivalent version of a given program,
optimized in certain ways – typically to reduce execution time
and/or memory operations. For trivial programs, compilation time
is insignificant, but quickly increases as programs become more
complex. Performing multiple compiler optimisations adds signifi-
cant overhead to compilation time. Reducing compilation time is
an important problem that has been addressed in several ways,
• The C++ programming language has introduced the zero overhead
principle which dictates that no overhead, both during compi-
lation and execution, should occur for features of the language
that are not being used [37]. Furthermore, the GNU compiler
collection [35] has introduced in its C/C++ compilers the -O1
optimization level which includes only lightweight optimizations
that do not result in long compilation times.

• Krintz et al. [20] propose an annotation framework for Java pro-
grams which collects off-line analysis information and embeds
it, in the form of annotations, into Java programs in order to
guide the optimization process of dynamic compilers, reducing
compilation overhead. In [21] Krintz et al. present the concept of
lazy compilation in which a method is compiled just before its
first invocation and then augment this concept by exploiting pro-
filing information to ensure that performance critical methods
are invoked using optimized code.

• When compiling for FPGAs, Lavin et al. [25] propose the use
of pre-compiled circuit blocks, known as hard macros, as a way
to speed up the compilation process. Chan et al. [5] present a
compilation time reduction scheme which is based on SAT engine
partitioning in order to reduce the compilation time of the FPGA-
based SAT solver presented in [41].

• Machine learning techniques have also been proposed for reduc-
ing compilation time. Cavazos and O’Boyle [4] propose the use
of logistic regression for building a probabilistic model in order
to select the best optimizations per method in Java programs
while Leather et al. [26] introduce a mechanism to automatically
identify the important features of programs that can be used by
machine learning heuristics.

• Iterative compilation, which is proposed by Kisuki et al. in [19]
and evaluated by Fursin et al. in [9], is a method in which succes-
sive source-to-source transformations are applied to a program.
Their impact is determined by compiling and executing the code.
This results in multiple versions of the program with the best ver-
sion being picked based on criteria of compile and/or execution
time.
Our approach reduces compilation time of test code by applying

source-to-source transformation before compilation takes place. It
is similar to iterative compilation methodologies in that it includes
source-to-source transformations as a pre-compilation step. The
main drawback of iterative compilation is its feasibility, as evenwith
a small set of possible code transformations, the resulting optimiza-
tion space is very large. This is addressed in [9], [3] and [39] which
propose ways to reduce the search space by utilizing heuristics. In

2

Assessing the Effect of Data Transformations on Test Suite Compilation ESEM ’18, October 11–12, 2018, Oulu, Finland

contrast, our approach focuses on exploiting a common pattern for
calling test functions and is able to use a single source-to-source
transformation in order to reduce compilation time in test code.

In particular, we apply data transformation to achieve reduction
in test code compilation time. Data transformations are defined
by Boyle et al. [27] as “those transformations concerned with the
layout, storage and access of array data, rather than reordering the
program control flow”. In this work, Boyle et al. define and validate
an algebraic framework for data transformations in which an array
transformation consists of a change in the way it is stored and ac-
cessed. Data transformations have been subsequently explored for
various purposes. [18], [17] and [33] utilize data transformations in
order to improve cache memory locality. In [16], data transforma-
tions are used for reducing the number of false sharing misses in a
shared memory multiprocessing system and in [15], they are used
for enabling loop vectorization on data parallel architectures. To
the best of our knowledge, there has been no prior work exploring
data transformations to reduce compilation time of test code.

Our work, in this paper, is applied to parametrised unit tests
(PUTs), introduced by Tillman and Schulte in [38] and also used
in commercial test frameworks like GoogleTest [34]. PUT extends
conventional unit tests by allowing the user to parameterize them
and generate multiple traditional unit tests from a single PUT. In
this way, PUTs are used for test generation. The approach employs
symbolic execution for systematically producing a minimal set of
parameters which results in the generation of a set of concrete tests
that execute a finite number of paths in the system under test. Our
proposed transformation is applicable on the concrete tests that
have been generated from PUTs for reducing their compilation
time.

3 APPROACH
A typical test in a test code, as described in Section 1, comprises
of four steps: a set up call, test function invocation with a set of
inputs, verification that the outputs match expectations, and a clean
up of state and resources used by the test. Figure 1 shows a test
code sample from GoogleTest [34], a popular C++ framework for
test code development and execution. There are two test groups in
Figure 1, also referred to as parameterized test suites in GoogleTest.
Each contains multiple tests of the respective function under test
(FUT) – IsPrime() and GetNextPrime(). In both groups, each test
uses a separate invocation of the FUT over a specific test input, and
compares the output to the expected output. Test code in this form
has a large number of function invocations and memory operations,
which in turn creates significant overhead during compilation. The
larger the number of test cases, the longer the compilation time,
which in turn has negative impact on productivity.

Our approach operates on the test code, rather than program
source code and transforms the way in which FUTs are invoked and
test input data is distributed within test groups. This is illustrated in
Figure 2 – we combine test inputs into central data structures and
then embed the call to the FUTwithin a loop in which each iteration
represents a single test. This transformation reduces the number
of distinct FUT invocations and the number of data structures, on
which the the compiler operates.

3.1 Test Code Transformation
Algorithm 1 illustrates the steps in our transformation. It takes two
inputs – the test code (TC) and the name of the program function

TEST_P(PrimeTableTestSmpl7, ReturnsTrueForPrimes) {
 EXPECT_TRUE(table_->IsPrime(2));
 EXPECT_TRUE(table_->IsPrime(3));
 EXPECT_TRUE(table_->IsPrime(5));
 EXPECT_TRUE(table_->IsPrime(7));
 EXPECT_TRUE(table_->IsPrime(11));
 EXPECT_TRUE(table_->IsPrime(131));
}

TEST_P(PrimeTableTestSmpl7, CanGetNextPrime) {
 EXPECT_EQ(2, table_->GetNextPrime(0));
 EXPECT_EQ(3, table_->GetNextPrime(2));
 EXPECT_EQ(5, table_->GetNextPrime(3));
 EXPECT_EQ(7, table_->GetNextPrime(5));
 EXPECT_EQ(11, table_->GetNextPrime(7));
 EXPECT_EQ(131, table_->GetNextPrime(128));
}

Figure 1: GoogleTest sample code illustrating parameterized
test suites.

(PF) being tested. Output is the transformed test code (TTC). First,
the TC is searched to identify all calls to the PF along with their
input arguments. Next, input test data of the same type across the PF
calls are combined into centralized data structures (DS) accessible
by every test. In the next step, DS are inserted in the TTC. Then, the
PF calls are updated in the TTC to accept the correct data slice from
DS. The final step combines the PF calls into a single call inside a
loop. As part of the final step, for each test, the input data from DS
is indexed using the appropriate loop iteration number.

Figure 3 shows an example of the test code transformation. In
the original test code before transformation, there is a separate call
to the foo function in every test. Inputs to foo are a one-dimensional
integer array, inputArray[], and an integer, inputScalar. After
the code transformation, the one-dimensional input array passed
to each of the tests is replaced by a single two-dimensional array,
inputArray[NUM_TESTS][], and the input integer is replaced by a
single one-dimensional integer array, inputScalar[NUM_TESTS].
Further, multiple calls to the foo function are replaced by a single
call embedded within a loop, where each iteration represents a test.
The iteration index is used to access the correct slice of input data
from the merged data structures for each test.

3.2 Implementation
The approach is implemented using Python scripts, which take the
FUT calls and data structures within the parametrized test suite
as inputs. The scripts produce valid C/C++ code in which data
structures of the same type are combined into centralised data
structures and multiple test function calls are replaced by a single
test function call bound within a loop. The scripts also add the
index to the correct data slice from the centralised data structure
which is passed into the FUT called in each loop iteration.

4 EXPERIMENT
We evaluate the effectiveness of the transformation proposed in Sec-
tion 3 using programs from industry standard benchmark families
and an industrial application from Codeplay. We seek to investigate
the following questions regarding performance and correctness:

3

ESEM ’18, October 11–12, 2018, Oulu, Finland Panagiotis Stratis, Vanya Yaneva, and Ajitha Rajan

foo

Input_1

Output

N
Tests

foo

Input_1
[i]

Input_2
[i]

Output
[i]

N
Tests

Input_1
[N]

Input_2
[N]

Output
[N]

Input_2 . . .

. . .

. . .

Figure 2: Original test code with N FUT calls (left), transformed to an equivalent test code containing a single FUT call within
a loop (right), using our approach.

const int NUM_TESTS= 10;

int inputArray [NUM_TESTS] [] = {
{0,1,2,3,4,5,6,7,8,9},
{0,9,2,0,9,1,3,0,0,8},
{5,8,1,1,5,6,8,2,9,4},
{9,5,7,7,7,8,5,3,5,0},
{0,3,5,5,7,1,0,6,7,3},
{4,2,6,4,2,5,7,3,3,1},
{3,3,0,4,5,7,4,0,2,2},
{3,7,4,5,0,8,7,6,0,9},
{6,1,0,9,1,4,7,1,9,0},
{0,3,4,5,3,8,1,0,7,3}
};

int inputScalar [NUM_TESTS] = {0,1,2,3,4,5,6,7,8,9};

int foo(int inputArray [], int inputScalar){
 //Function under test.
 //Remains unchanged after transformation.
}

void TestRunner(){
 for (int i=0; i<NUM_TESTS;i++){
 ASSERT_EQUALS(expectedValue[i], foo(inputArray[i], inputScalar[i]));
 }
}

int inputArray0 [] = {0,1,2,3,4,5,6,7,8,9};
int inputArray1 [] = {0,9,2,0,9,1,3,0,0,8};
int inputArray2 [] = {5,8,1,1,5,6,8,2,9,4};
int inputArray3 [] = {9,5,7,7,7,8,5,3,5,0};
int inputArray4 [] = {0,3,5,5,7,1,0,6,7,3};
int inputArray5 [] = {4,2,6,4,2,5,7,3,3,1};
int inputArray6 [] = {3,3,0,4,5,7,4,0,2,2};
int inputArray7 [] = {3,7,4,5,0,8,7,6,0,9};
int inputArray8 [] = {6,1,0,9,1,4,7,1,9,0};
int inputArray9 [] = {0,3,4,5,3,8,1,0,7,3};

int foo(int inputArray [], int inputScalar){
 //Function under test.
}

void TestRunner(){
 ASSERT_EQUALS(expectedValue0, foo(inputArray0, 0));
 ASSERT_EQUALS(expectedValue1, foo(inputArray1, 1));
 ASSERT_EQUALS(expectedValue2, foo(inputArray2, 2));
 ASSERT_EQUALS(expectedValue3, foo(inputArray3, 3));
 ASSERT_EQUALS(expectedValue4, foo(inputArray4, 4));
 ASSERT_EQUALS(expectedValue5, foo(inputArray5, 5));
 ASSERT_EQUALS(expectedValue6, foo(inputArray6, 6));
 ASSERT_EQUALS(expectedValue7, foo(inputArray7, 7));
 ASSERT_EQUALS(expectedValue8, foo(inputArray8, 8));
 ASSERT_EQUALS(expectedValue9, foo(inputArray9, 9));
}

Figure 3: Example of test code transformation.

Q1. Compilation Speedup: Does the proposed transformation, rel-
ative to existing compiler optimisations, speedup test code com-
pilation? To answer this question, we used test suites of
varying sizes, from 10 to 10K tests, for each subject program
and measured the compilation times before and after the
transformation, enabling all existing compiler optimisations.

Q2. Execution: Does the transformation slow down execution of
the test code? To examine this question, for each program
and associated test suite, we compare running times of the
original and transformed versions of the test code.

Q3. Correctness: Does the transformation preserve correctness of
test executions? For each benchmark and associated test suite,

we compared values of internal states and outputs, obtained
during execution of each of the tests in the suite with the
original and transformed test code.

Q4. Scalability Does the transformation enable the compilation of
larger test suites? To answer this question, we evaluated fea-
sibility of compiling the test code with an increasing number
of tests, with and without our transformation.

4.1 Subject Programs
In this Section, we describe the programs and associated tests used
in our experiment. We used 15 subject programs from 2 industry
standard benchmark suites, EEMBC and SPEC, that cover a wide

4

Assessing the Effect of Data Transformations on Test Suite Compilation ESEM ’18, October 11–12, 2018, Oulu, Finland

Input: TC test code, PF program function
Output: TTC transformed test code
1: Create a copy of TC , call it TTC .
2: Search TTC for parameterized test suites, and record all

calls of PF and its input arguments.
3: Merge the input data of the same type from all the tests

into centralized data structures DS .
4: Merge the multiple PF calls into a single PF call embedded

in a loop with as many iterations as there are tests in the
parameterized test suite.

5: Update the PF call within the loop so that it accepts the
correct slice of data from DS .

6: Return TTC .

Algorithm 1: Test code transformation

range of applications. We also evaluate our approach using an in-
dustry provided program, ComputeCPP, developed at Codeplay.
Subject programs in EEMBC and SPEC benchmarks were accompa-
nied by a small number of tests. In order to evaluate our approach
with large test suites, we randomly generated up to 10K tests for
each of the programs in EEMBC and SPEC, using python’s random
library. Tests for ComputeCPP were written by developers at Code-
play. The programs and their descriptions along with number of
tests are provided in Table 1.

EEMBC. We used 10 subject programs from the Embedded Mi-
croprocessor Benchmark Consortium (EEMBC) [29] that provides
a diverse suite of benchmarks organised into categories that span
numerous real-world applications. EEMBC benchmarks are not
just processor-based. They focus heavily on embedded software
running on smartphone, tablets, and other embedded systems. We
use 5 benchmarks from the automotive domain (AutoBench) and
5 from the Telecommunications domain (TeleBench) of EEMBC.
Benchmarks from AutoBench used in our experiment include a
Fast Fourier transformation program, an angle-to-time converter,
an inverse Fast Fourier transformation program, a Finite Impulse
Response filter and a road speed calculator. The other 5 EEMBC
benchmarks come from the telecommunications domain and com-
prise a convolutional encoder, a bit allocator, a viterbi decoder, a
signal correlation program and another Fast Fourier transformer.
For each of the 10 EEMBC programs, we randomly generated 10K
tests. Test suite sizes of thousands of test cases are not uncommon
in embedded software. They typically tend to have more test cases
than other forms because of their complexity [8]. Tests for EEMBC
programs in our experiment are large input arrays.

SPEC. In addition to the EEMBC benchmarks, we used another
5 benchmarks from the Standard Performance Evaluation Corpo-
ration (SPEC) [7] CPU2006 - a benchmark family designed for
comparing the performance of different computer systems against
compute-intensive workloads. 2 of the SPEC benchmarks, a file
compression program and a library for the simulation of a quan-
tum computer, come from the CINT2006 suite which evaluates
compute-intensive integer performance. The other 3 benchmarks
are part of the CFP2006 suite (compute-intensive floating point
performance evaluation) and consist of a bio-molecular systems
simulator, an incompressible fluids simulator and a pseudo-random

number generator. We randomly generated 10K tests for each of
the 5 programs.

ComputeCPP. We also applied our approach on an industrial ap-
plication - ComputeCPP is Codeplay Software’s implementation of
the SYCL [12] standard. SYCL is a single-source C++ programming
model for OpenCL [36] that provides a high level abstraction over
OpenCL, involving data dependency handling and task scheduling.
SYCL is comprised of a C++ template library and a device compiler.
In order to provide this higher level of abstraction, the features of
SYCL involve a very high amount of complexity in their implemen-
tation and a combinatory explosion of potential use cases in their
API. ComputeCPP enables integration of parallel computing into
applications and accelerates code across OpenCL devices such as
GPUs. As part of their Test-Driven Development process [2], Code-
play has produced a large number of test suites for ComputeCPP
with the number of tests in each test suite ranging from hundreds
to millions. The compilation time of the test suites for the Com-
puteCPP project has an impact on the software life-cycle because
of continuous integration: before each commit gets accepted, all
test suites have to be compiled and executed. For ComputeCPP, the
compilation time of its test suites is comparable to their execution
time. We applied our approach to two test suites for ComputeCPP,
one for testing the SYCL buffer class and one for testing the SYCL
image class. Each test suite contains 10K tests written by Codeplay
developers.

4.2 Measurement
We run our experiments using a desktop computer powered by an
Intel Core 2 Duo E8400 processor at 3 GHz, 32KB of Instruction
Cache, and 32 KB of L1 Data Cache. The machine runs Ubuntu
Server 14.04 with Linux kernel 3.16.0.33. For increased accuracy,
we disable any non-critical services on the Ubuntu server while
benchmarking. For ComputeCPP, a desktop computer powered
by an Intel Quad Core 6700 processor at 3.4 GHZ with 128KB of
Instruction Cache and 128KB of L1 data cache was used. The system
also included an AMD Radeon GPU 5450 series with 80 stream
processors. We measure compilation and execution time using the
Unix time command. The results we report consist of the running
time on the CPU (user statistic). In our experiments, we used two
well known C compilers, GCC 7.2.0 [35] and Clang 5.0 [24], for
EEMBC and SPEC programs. For ComputeCPP, the developers use
Codeplay’s in-house compiler built on Clang. All subject programs
were compiled with the highest level of optimisation (-O3).

5 RESULTS AND ANALYSIS
For each of the subject programs presented in Section 4, we compare
compilation times, execution times and correctness before and after
transformation. We collected 10 measurements for compilation and
execution times, and report their medians for comparison.

5.1 Q1. Compilation
Figures 4 and 5 show the speedup gained in compilation time with
EEMBC and SPEC programs for test suite sizes ranging from 10 to
10K tests, separately for Clang and GCC. Figure 6 shows the compi-
lation speedup for two test suites of ComputeCPP, compiled with
Codeplay’s in-house compiler. SYCL, being an abstraction layer,
allows the host and kernel code of a heterogeneous application to
be contained in the same source file. As a result, we present two

5

ESEM ’18, October 11–12, 2018, Oulu, Finland Panagiotis Stratis, Vanya Yaneva, and Ajitha Rajan

Subject Domain Description #Tests
a2time01 EEMBC - Automotive Angle-to-time conversion 10K
aifftr01 EEMBC - Automotive Fast Fourier transforms 10K
aifirf01 EEMBC - Automotive Finite Impulse Response filter 10K
aiifft01 EEMBC - Automotive Inverse Fast Fourier transforms 10K
rspeed01 EEMBC - Automotive Road speed calculation 10K
autcor00 EEMBC - Telecom Cross correlation of signals 10K
conven00 EEMBC - Telecom Convolutional encoding 10K
fbital00 EEMBC - Telecom Bit allocation 10K
fft00 EEMBC - Telecom Fast Fourier transforms 10K
viterb00 EEMBC - Telecom Viterbi decoding 10K
401.bzip2 SPEC - Integer Compression 10K
462.libquantum SPEC - Integer Quantum computing 10K
444.namd SPEC - Floating Point Molecular dynamics simulation 10K
470.lbm SPEC - Floating Point Computational fluid dynamics 10K
999.specrand SPEC - Floating Point Pseudo-random number generation 10K
bufferTS ComputeCPP Arithmetic operations on the cl::sycl::buffer class 10K
imageTS ComputeCPP Arithmetic operations on the cl::sycl::image class 10K

Table 1: Subject programs used in our experiment

101 102 103 104

Number of tests

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Automotive compiled with Clang
aifftr01

aiifft01

rspeed01

aifirf01

a2time01

101 102 103 104

Number of tests

1.0

1.1

1.2

1.3

1.4

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Automotive compiled with GCC
aifftr01

rspeed01

aiifft01

a2time01

aifirf01

101 102 103 104

Number of tests

1.0

1.1

1.2

1.3

1.4

1.5

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Telecom compiled with Clang
fbital00

viterb00

conven00

fft00

autcor00

101 102 103 104

Number of tests

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: Telecom compiled with GCC
fbital00

viterb00

conven00

fft00

autcor00

Figure 4: Speedup in compilation time for EEMBC, when compared to the original code, for different test suite sizes.

different plots for compilation speedup: one for the host test code,
and the other for the kernel test code. In the following sections, we
present speedup results for each of the benchmark families.

5.1.1 EEMBC: Automotive and Telecom. The results for EEMBC
programs in Figure 4 are shown separately for programs from the
automotive domain and those from telecom domain to ease illustra-
tion. We find that compilation speedup increases with increasing

6

Assessing the Effect of Data Transformations on Test Suite Compilation ESEM ’18, October 11–12, 2018, Oulu, Finland

numbers of tests, for all programs in both domains, using both GCC
and Clang. Speedup is observed for test suite sizes greater than
100 tests. Maximum speedup for all benchmarks is achieved at the
largest test suite size of 10K tests. Original compilation times for
10K tests are of the order of 7 to 10 seconds with Clang, and 10 to
33 seconds with GCC.

For automotive programs, maximum speedup achieved with the
Clang compiler is 1.3× for the aifftr01 benchmark (9 secs to 6.5
secs), and 1.4× with GCC for the same benchmark (11secs to 7.7
secs). The average speedup for 10K tests across all benchmarks is
1.3× for both Clang and GCC.

For the telecom benchmarks, maximum speedup achieved with
Clang is 1.5×, and 1.8× with GCC for the fbital00 benchmark (6.2
secs to 3.5 secs). The average speedup for 10K tests across all telecom
benchmarks is 1.3× for Clang and 1.4× for GCC.

5.1.2 SPEC. Figure 5 shows the speedups achieved for the SPEC
benchmarks. Similar to EEMBC, the speedups are higher for larger
test suites and maximum speedup is achieved for 10K tests. We
start to observe speedup when number of tests exceeds 100 and
the increase is sharp when number of tests rises over 1000. This is
because with larger numbers of tests, significantly more number of
instructions are reduced with our transformation. This is explained
in more detail in Section 5.1.5

Original compilation times for SPEC are in the range of 1 to 12
seconds. Unlike EEMBC, there is a wide range in the maximum
speedup achieved over the different programs with both Clang
and GCC. With Clang, the maximum speedup achieved is 15×
for 470.lbm, but only 1.5× for 401.bzip2. With GCC, the maximum
speedup is higher - 20.2× for 999.specrand versus 3.2× for 401.bizp2.
Average speedup for 10K tests across all programs is 7.9× for Clang
and 12.1× for GCC. High disparity in maximum speedup achieved
across programs is due to the number of compilation units associ-
ated with each program, and is discussed in depth in Section 5.1.5.

5.1.3 ComputeCpp. Figure 6 shows the compilation speedup
achieved for the two ComputeCPP test suites – bufferTS and im-
ageTS. Original compilation times are shown in Table 2. As observed
with EEMBC and SPEC, speedups are proportional to the number
of tests being compiled - starts at 100 tests and increases sharply
beyond 1000 tests. For device compilation, bufferTS and imageTS
start with negligible speedups for 10 tests and reach a maximum
of 9.2× and 2×, respectively, for 10K tests. For host compilation,
we observe significantly higher speedups. For 10K tests, bufferTS
shows a large speedup of 69.5× while imageTS achieves a speedup
of 15×. The average values across both test suites are 42.2× for host
compilation and 5.6× for device compilation. The reason for the
difference between host and device compilation speedups has to
do with the fact that the device code, for both test suites, remains
unchanged after the application of our transformation. We discuss
this further in next Section 5.1.4.

5.1.4 Common trends. Across all benchmarks, we start to ob-
serve speedup for test suites that have more than 100 tests. In addi-
tion, speedup increases with the size of the test suite. These results
indicate that our approach is particularly beneficial for programs
with large test suites. Large test suites with thousands of tests are
not uncommon, given the rate at which software has been growing
in size and complexity. The largest speedup values are achieved for

the largest test suite size of 10K tests across all programs, maximum
being,

• 1.5X for EEMBC, compiled with Clang
• 1.8X for EEMBC, compiled with GCC
• 15X for SPEC, compiled with Clang
• 20.2X for SPEC, compiled with GCC
• 9.2X for ComputeCPP, device compilation
• 69.5X for ComputeCPP, host compilation

GCC vs Clang. For all EEMBC and SPEC benchmarks, there is
a difference in the speedup achieved by the Clang and GCC com-
pilers, with GCC achieving better maximum speedup than Clang
for EEMBC (1.8× vs 1.5×) and SPEC (20.2× vs 15×) benchmarks.
Our experimental data reveals that GCC takes longer to compile
the original version of the code, compared to Clang. However, with
the transformed version, the differences between the two compilers
are much smaller. Differences in compilation time between com-
pilers is not surprising, since they use different algorithms and
optimisations. Comparing compilers is not the focus of this paper.
It is, however, worth noting that our transformations achieve faster
compilation for both compilers, with GCC benefiting more than
Clang in our experiments.

5.1.5 Analysis. To understand the reason for the speedup ob-
served over all benchmarks, we inspected the output generated
by the -ftime-report flag in the Clang compiler, which outputs
detailed timing data for each compiler pass. It showed that for the
largest test suite size, the most time-consuming compiler passes
are:

1. Instruction Selection: choose machine instructions for
each instruction in the intermediate representation.

2. Function Inlining: analyse function calls to check if they
should be replaced with the body of the function.

3. Combine Redundant Instructions: analyse instructions
to check if they can be combined into fewer simpler instruc-
tions.

The time consumed by the above three passes constitutes an average
of 47% of the total time. In comparison, using the transformed test
code, the same passes are orders of magnitude faster. This is because
the passes operate on fewer instructions using the transformed code,
when compared to the original test code.

To confirm this, we inspected the assembly code generated for
the transformed and original test code. We observed that in the orig-
inal version, the compiler emits separate calls to the test function
for each test. As more tests are added to the test suite, more func-
tion calls are emitted, leading to much longer times for instruction
selection and function inlining. In contrast, by embedding the test
function call in a loop, as shown in Figure 3, the need to compile
separate function calls for each test is removed and the number of
instructions generated by the compiler is reduced, leading to faster
compilation times.

For ComputeCPP, we observe different speedups for host and
device compilations (42.2× vs 5.6× average values). The reason for
this speedup is in the structure of the host and kernel code. Both
bufferTS and imageTS contain a single kernel, within a host function
that is called once for every test in the test suite. Our transformation
alters the number of calls to the host function being tested, but not
the kernel embedded within it. In other words, our transformation
only targets host code, not device code. Given that the device code

7

ESEM ’18, October 11–12, 2018, Oulu, Finland Panagiotis Stratis, Vanya Yaneva, and Ajitha Rajan

101 102 103 104

Number of tests

2

4

6

8

10

12

14

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: SPEC compiled with Clang
470.lbm

462.libquantum

999.specrand

444.namd

401.bzip2

101 102 103 104

Number of tests

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: SPEC compiled with GCC
999.specrand

462.libquantum

470.lbm

444.namd

401.bzip2

Figure 5: Speedup in compilation time for SPEC, when compared to the original code, for different test suite sizes.

101 102 103 104

Number of tests

2

4

6

8

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: ComputeCPP compiled on device
bufferTS

imageTS

101 102 103 104

Number of tests

0

10

20

30

40

50

60

70

S
p

ee
du

p
w

he
n

co
m

pa
re

d
to

or
ig

in
al

co
de

Compilation time: ComputeCPP compiled on host
bufferTS

imageTS

Figure 6: Speedup in compilation time for ComputeCPP, when compared to the original code, for different test suite sizes.

remains unchanged, it is surprising that we observe speedup during
device compilation. Upon consulting developers at Codeplay who
fully understand ComputeCPP and its test suites, we learned that
the device compiler parses the entire test code (including the host
code) to create the AST which is then used to identify the kernel
code for further compilation. With our transformation, the size of
test code is reduced. As a result, the parser for the device compiler
operates on a much smaller total code base, resulting in compilation
speedup even when device code remains unchanged.

Speedup variation across subject programs. Maximum speedup
varies greatly across the benchmarks. With three of the SPEC
benchmarks (470.lbm, 462.libquantum and 999.specrand) and Com-
puteCPP, our approach achieves significant speedup in the range
of 10× to 69×. However, with the EEMBC benchmarks and two of
the SPEC benchmarks, our approach achieves very low speedup
(less than 2×). To understand this, we use the data supplied by the
-ftime-report flag in the Clang compiler, which gives us the time
spent compiling each individual file in the benchmark program.
This measurement showed us that for each benchmark, our optimi-
sation improves the compilation time of the file with the test code,
but it does not affect the compilation time of any other source files
used by the program. Thus, when compiling the test code, if the

time taken to compile tests is much greater than the time needed
to compile libraries and other included files in the test code, then
our approach is capable of producing significant speedup.

To better understand this effect, we measured the compilation
time for the individual test code files as percentage of the total
compilation time for all SPEC and EEMBC programs (for test suites
of 10K tests, with Clang). For 3 of the SPEC programs that gave
high speedup–470.lbm, 462.libquantum and 999.specrand– majority
of the compilation time (> 97%) is spent on the test code. Closer
examination revealed that the test code is a single file that links to
external pre-compiled libraries. On the other hand, for the other 2
SPEC programs with low speedup– 444.namd and 401.bzip2– and
all EEMBC programs, compiling the test code takes less than a
third of the total time. The test code for these applications included
several files (up to 10), all of which were compiled together with
the test code and take much longer than the test code to compile.
Consequently, our transformation speeding up the test code has
little effect, only making up a small fraction of the total compilation
time. To help gain more speedup for such test codes that include
large libraries and other files, we recommend pre-compiling these
external files/libraries (as is the case for the other 3 SPEC programs)
before applying our transformation.

8

Assessing the Effect of Data Transformations on Test Suite Compilation ESEM ’18, October 11–12, 2018, Oulu, Finland

5.1.6 Statistical Analysis. We analyse the results presented in
Figures 4,5, 6 and determine if the following hypotheses are sup-
ported,
H1: Transformed test code, using the GCC compiler, compiles

faster than the original test code.
H2: Transformed test code, using the Clang compiler, compiles

faster than the original test code.
We are aware that the number of samples used in our experiment

is rather small, andwould therefore be unreasonable to fit the data to
a theoretical probability distribution. We test the hypotheses by not
assuming any particular distribution. To do this, we use the Mann-
Whitney-Wilcoxon test, a non-parametric test with no distributional
assumptions. We use the results for compilation time observed
with 10K tests over all subject programs, with and without our
transformation. ComputeCPP compiler, based on Clang, is included
in the analysis for results using the Clang compiler.

The p-values using Mann-Whitney-Wilcoxon test were 0.028
for GCC and 0.036 for Clang rejecting the corresponding null hy-
potheses for H1 and H2 at 0.05 significance level. Thus, for the case
studies in our experiment, the hypothesis that our transformation
results in faster compilation of test code, using both GCC and Clang,
is supported at 5% statistical significance.

Summary. The speedup gained with our approach depends on
the number of tests and also on the proportion of test code size with
respect to overall code size being compiled. We find that across all
programs in our experiment, larger the number of tests in the test
code, larger the compilation speedup from our approach. This is
mainly attributed to the reduced number of function calls, and as a
result, fewer instructions that need to be compiled. For our indus-
trial case study, ComputeCPP, we observed significant speedups (up
to 69X), much larger than the performance benchmarks, EEMBC
and SPEC, in our experiment. This is primarily because the indus-
trial case study is much larger than the SPEC and EEMBC programs,
and the reduction in function calls has a larger effect on compila-
tion time. This effect is also observed when comparing SPEC and
EEMBC. SPEC programs are larger than EEMBC programs, and
we find higher average speedup with our approach for SPEC (12X
for GCC) than EEMBC (1.4X). The results in our experiment lead
us to believe that the proposed transformation will be particularly
valuable for large case studies with large numbers of tests, as is the
case for ComputeCPP.

5.2 Q2. Execution
For all subject programs, wemeasured the running times of the orig-
inal and transformed versions of the test code, after being compiled
in fully optimised mode (-O3 for GCC and Clang). For all EEMBC
and SPEC programs, we find that the execution of the transformed
test code is as fast as the original code. For ComputeCPP, trans-
formed test code executed faster than the original version. For the
programs in our experiment, the results categorically show that
our transformation does not slow down the execution of the test
code.

5.3 Q3. Correctness
For each subject program, we collected outputs and values of inter-
nal variables from executions of each of the tests in the test suites,
using both the original and transformed test code. We found that
for all subject programs, with 10K tests each, the test outputs and

values of internal program states between the two versions of the
code are an exact match. We can safely conclude that our framework
for transforming test code preserves correctness of test execution for
all 17 benchmarks and test suites in our experiment.

5.4 Q4. Scalability
For each of the EEMBC and SPEC programs, we generated test suites
with increasing numbers of tests (powers of 10), and attempted to
compile them using the -03 optimisation flag (aggressive optimisa-
tion). We did not use the ComputeCPP benchmark since we could
not generate tests and alter the size of the test suite created by
Codeplay developers. We hypothesize that our transformation will
make it feasible to compile and optimise much larger test suite sizes
than would, otherwise, be possible. When number of tests in the
test code reached 1 million, the original version of the test code for
all benchmarks, with both Clang and GCC, crashed during compi-
lation. However, our transformation allowed test code with more
than 10 million tests to be compiled successfully with fully enabled
optimisations. This demonstrates that our transformation not only
leads to faster compilation of test code, but also makes it feasible
to compile very large test suites while enabling all optimisations.

6 THREATS TO VALIDITY
We see two threats to the external validity of our experiment based
on the selection of programs and choice of test suites. We chose
programs and test suites in our study that did not include template
arguments in the test function call. Our approach is not applicable
when tests are parameterised with data that needs to be evaluated
at compile time, which is the case for template instantiations. Our
transformation causes the input for each test to be evaluated at
runtime, using the index of the outer loop responsible for repeat-
edly calling the test function with different inputs at each iteration.
Consequently, in its current form, our transformation is not appli-
cable to test inputs that need to be evaluated at compile time. As a
result, our results may only generalize to programs and test suites
satisfying this constraint.

Another threat to external validity relates to the test suites used
in our study. We used developer created test suites for ComputeCPP
and randomly generated test suites that are controlled for test
suite size for the EEMBC and SPEC programs. We cannot claim
that the test suites we used are necessarily representative of all
possible test suites. Additional research is needed to assess the
performance of the proposed transformation with different test
generation frameworks.

7 CONCLUSION
We have presented a novel approach that allows test code for pro-
grams to be compiled efficiently. Our approach restructures the
test inputs and reduces the number of calls placed by tests to the
function being tested. We evaluated the transformations proposed
by our approach using automotive and telecom programs from the
EEMBC benchmark suite, programs from the SPEC benchmark suite,
and 1 industry provided program and test code, ComputeCPP. We
find that our approach results in compilation speedups of up to 69×
for ComputeCPP, up to 20× for SPEC, and up to 1.8× for EEMBC
programs. Variation in speedup is attributed to size of the program,
and also proportion of test code over total code size being compiled.
Speedups also differed based on the compiler that was used; with

9

ESEM ’18, October 11–12, 2018, Oulu, Finland Panagiotis Stratis, Vanya Yaneva, and Ajitha Rajan

ComputeCPP Test Code # Tests Compiler Orig. time (secs) New time (secs)

bufferTS 10K host compilation 257 3.7
device compilation 28.2 3

imageTS 10K host compilation 433.8 29
device compilation 46.2 22.4

Table 2: Compilation times for ComputeCPP test codes.

gcc benefiting more than clang in our experiments. Further, we
found that number of tests being transformed directly affected the
speedup.For all subject programs in our experiment, larger the num-
ber of tests, larger the speedup gained from our approach. We also
observed that execution of the test code after transformation is as
fast or faster than the original test code. Thus, our transformation
for compilation time is not detrimental to execution time. Our ex-
periment results also confirmed that the transformation maintained
correctness of test execution results across all subject programs
and test suite sizes.

Time consumed for test code compilation is bound to get worse in
the future with more complex systems and larger numbers of tests.
Our approach provides a safe and efficient means for tackling this
problem. In this paper, we have sampled programs from embedded
systems, performance benchmarks, and an industrial application. In
the future, we plan to conduct more extensive empirical evaluations
using programs and test suites from different domains. We will also
extend our approach to handle complex test inputs, like images and
files.

REFERENCES
[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 2007. Compilers: principles,

techniques, and tools. Vol. 2. Addison-wesley Reading.
[2] Kent Beck. 2003. Test-driven development: by example. Addison-Wesley.
[3] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou.

1998. Iterative compilation in a non-linear optimisation space. InWorkshop on
Profile and Feedback-Directed Compilation.

[4] John Cavazos and Michael FP O’boyle. 2006. Method-specific dynamic compila-
tion using logistic regression. ACM SIGPLAN Notices 41, 10 (2006), 229–240.

[5] Pak K Chan, Mark J Boyd, S Goren, K Klenk, V Kodavati, R Kundu, M Margolese,
J Sun, K Suzuki, E Thorne, et al. 1999. Reducing compilation time of Zhong’s
FPGA-based SAT solver. In Field-Programmable Custom Computing Machines,
1999. FCCM’99. Proceedings. Seventh Annual IEEE Symposium on. IEEE, 308–309.

[6] ComputeCpp. 2017. ComputeCpp – Accelerate Complex C++ Ap-
plications on Heterogeneous Compute Systems using Open Standards.
"https://www.codeplay.com/products/computesuite/computecpp".

[7] Kaivalya M Dixit. 1991. The SPEC benchmarks. Parallel computing 17, 10-11
(1991), 1195–1209.

[8] Christof Ebert and Capers Jones. 2009. Embedded software: Facts, figures, and
future. Computer 42, 4 (2009).

[9] GG Fursin, Michael FP O’Boyle, and Peter MW Knijnenburg. 2002. Evaluating
iterative compilation. In International Workshop on Languages and Compilers for
Parallel Computing. Springer, 362–376.

[10] Gregory Gay, Ajitha Rajan, Matt Staats, Michael Whalen, and Mats PE Heimdahl.
2016. The effect of program and model structure on the effectiveness of mc/dc test
adequacy coverage. ACM Transactions on Software Engineering and Methodology
(TOSEM) 25, 3 (2016), 25.

[11] Brian Gough and Richard M Stallman. 2004. An Introduction to GCC for the
GNU Compilers gcc and g++. Network Theory Ltd (2004), 35–46.

[12] Khronos OpenCL Working Group et al. 2015. SYCL: C++ Single-source Hetero-
geneous Programming For openCL.

[13] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015. The
art of testing less without sacrificing quality. In Proceedings of the 37th ICSE. IEEE
Press, 483–493.

[14] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.

[15] Byunghyun Jang, Perhaad Mistry, Dana Schaa, Rodrigo Dominguez, and David
Kaeli. 2010. Data transformations enabling loop vectorization on multithreaded
data parallel architectures. In ACM Sigplan Notices, Vol. 45. ACM, 353–354.

[16] Tor E Jeremiassen and Susan J Eggers. 1995. Reducing false sharing on shared
memory multiprocessors through compile time data transformations. Vol. 30. ACM.

[17] M Kandemir, A Choudhary, J Ramanujam, and Prithviraj Banerjee. 1998. Improv-
ing locality using loop and data transformations in an integrated framework. In
Proceedings of the 31st annual ACM/IEEE international symposium on Microarchi-
tecture. IEEE Computer Society Press, 285–297.

[18] Mahmut Kandemir, J Ramanujam, and Alok Choudhary. 1999. Improving cache
locality by a combination of loop and data transformations. IEEE Trans. Comput.
48, 2 (1999), 159–167.

[19] Toru Kisuki, Peter MW Knijnenburg, Mike FP O’Boyle, François Bodin, and
Harry AG Wijshoff. 1999. A feasibility study in iterative compilation. In Interna-
tional Symposium on High Performance Computing. Springer, 121–132.

[20] Chandra Krintz and Brad Calder. 2001. Using annotations to reduce dynamic
optimization time. ACM Sigplan Notices 36, 5 (2001), 156–167.

[21] Chandra J Krintz, David Grove, Vivek Sarkar, and Brad Calder. 2001. Reducing
the overhead of dynamic compilation. Software: Practice and Experience 31, 8
(2001), 717–738.

[22] Peter Kukol. 1996. System and methods for optimizing object-oriented compila-
tions. US Patent 5,481,708.

[23] Ashish Kumar. 2010. Development at the speed and scale of google. QCon San
Francisco (2010).

[24] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In
The BSD Conference. 1–2.

[25] Christopher Lavin, Marc Padilla, Subhrashankha Ghosh, Brent Nelson, Brad
Hutchings, and Michael Wirthlin. 2010. Using hard macros to reduce FPGA
compilation time. In Field Programmable Logic and Applications (FPL), 2010 Inter-
national Conference on. IEEE, 438–441.

[26] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic feature gen-
eration for machine learning based optimizing compilation. In Code Generation
and Optimization, 2009. CGO 2009. International Symposium on. IEEE, 81–91.

[27] Michael FP O’boyle and Peter MW Knijnenburg. 1999. Nonsingular data trans-
formations: Definition, validity, and applications. International Journal of Parallel
Programming 27, 3 (1999), 131–159.

[28] Alan Page, Ken Johnston, and Bj Rollison. 2008. How we test software at Microsoft.
Microsoft Press.

[29] J.A. Poovey, M Levy, S Gal-On, and T Conte. 2009. A Benchmark Characterization
of the EEMBC Benchmark Suite. Micro, IEEE PP, 99 (2009), 1–1. https://doi.org/
10.1109/MM.2009.50

[30] Ajitha Rajan. 2009. Coverage metrics for requirements-based testing. Ph.D. Disser-
tation. University of Minnesota.

[31] Ajitha Rajan, Subodh Sharma, Peter Schrammel, and Daniel Kroening. 2014.
Accelerated test execution using GPUs. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering. ACM, 97–102.

[32] Andrew Richards. 2002. Codeplay Software Ltd. "https://www.codeplay.com/".
[33] Gabriel Rivera and Chau-Wen Tseng. 1998. Data transformations for eliminating

conflict misses. In ACM SIGPLAN Notices, Vol. 33. ACM, 38–49.
[34] Arpan Sen. 2010. A quick introduction to the Google C++ Testing Framework.

IBM DeveloperWorks (2010), 20.
[35] Richard M Stallman et al. 1999. Using and porting the GNU compiler collection.

Vol. 86. Free Software Foundation.
[36] John E Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A parallel pro-

gramming standard for heterogeneous computing systems. Computing in science
& engineering 12, 3 (2010), 66–73.

[37] Bjarne Stroustrup. 2005. The design of C++ 0x. C/C++ Users Journal 23, 5 (2005),
7.

[38] Nikolai Tillmann and Wolfram Schulte. 2005. Parameterized unit tests. In ACM
SIGSOFT Software Engineering Notes, Vol. 30. ACM, 253–262.

[39] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I
August. 2003. Compiler optimization-space exploration. In Code Generation and
Optimization, 2003. CGO 2003. International Symposium on. IEEE, 204–215.

[40] Vahid Garousi Yusifoğlu, Yasaman Amannejad, and Aysu Betin Can. 2015. Soft-
ware test-code engineering: A systematic mapping. Information and Software
Technology 58 (2015), 123–147.

[41] Peixin Zhong, Margaret Martonosi, Pranav Ashar, and Sharad Malik. 1998. Accel-
erating Boolean satisfiability with configurable hardware. In FPGAs for Custom
Computing Machines, 1998. Proceedings. IEEE Symposium on. IEEE, 186–195.

10

https://doi.org/10.1109/MM.2009.50
https://doi.org/10.1109/MM.2009.50

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background and Related Work
	3 Approach
	3.1 Test Code Transformation
	3.2 Implementation

	4 Experiment
	4.1 Subject Programs
	4.2 Measurement

	5 Results and Analysis
	5.1 Q1. Compilation
	5.2 Q2. Execution
	5.3 Q3. Correctness
	5.4 Q4. Scalability

	6 Threats to Validity
	7 Conclusion
	References

