
Compiler-Assisted Test Acceleration Using GPUs
Vanya Yaneva

Supervisor: Dr Ajitha Rajan
University of Edinburgh, UK
vanya.yaneva@ed.ac.uk

ABSTRACT
Software testing is a crucial part of the software development pro-
cess, but is often extremely time consuming, expensive, manual and
error prone. This has resulted in a crucial need for test automation
and acceleration. We propose using GPUs for the acceleration of
test execution, by running individual functional tests in parallel on
the GPU threads. We provide a fully automatic framework, called
ParTeCL, which generates GPU code from sequential programs
and executes their tests in parallel on the GPU. Current evalua-
tion on 9 programs from the EEMBC industry standard benchmark
suite show that ParTeCL achieves an average speedup of 16× when
compared to a single CPU for these benchmarks.

KEYWORDS
Functional testing, Automated testing, GPUs, Compilers
ACM Reference Format:
Vanya Yaneva. 2018. Compiler-Assisted Test Acceleration Using GPUs. In
ICSE ’18 Companion: 40th International Conference on Software Engineering
Companion, May 27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3183440.3190337

1 RESEARCH PROBLEM & MOTIVATION
Rigorous testing of any non-trivial system involves the genera-
tion and execution of a huge number of individual test cases. This
can often take hours, days or even weeks and puts an enormous
pressure on the software development schedule. Standard practices
like test-driven development and overnight test runs maintain the
quality of the developed system, but rely on an exhaustive test suite
and regular test executions. As a result, there is a crucial need to
accelerate testing, allowing for both faster development and the
production of higher quality software, as more tests can be executed
at a time.

This problem has led to a significant interest in test automation
both in academic literature and industry, resulting in advanced algo-
rithms for test case generation, metrics for test suite coverage and
methods for the acceleration of both test generation and execution.

Our research focuses on the acceleration of test execution, propos-
ing the use of GPGPUs (General Purpose Computing on Graphics
Processing Units) to execute tests in parallel, reducing total testing
times. This idea is based on the intuition that in the majority of
testing, test executions can be performed independently and thus,
in parallel. Indeed, testing is often performed in parallel in industry,
but the degree to which this can be done is limited by the cost of

This work was supported by grant EP/L01503X /1 from EPSRC..

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5663-3/18/05. . . $15.00
https://doi.org/10.1145/3183440.3190337

procuring and maintaining testing infrastructure. GPUs, on the
other hand, provide massive degrees of parallelism, capable of exe-
cuting thousands of test cases simultaneously. Originally designed
for graphics processing, they have been the focus of research in
various general purpose domains in recent years.

We currently target functional testing of embedded software.
This is an important problem, as embedded systems are ubiqui-
tous, featuring in consumer electronics and safety critical systems
such as car sensors, breaking systems, medical monitoring devices
and telecommunication systems. This makes safety concerns a top
priority when developing and approving embedded software and
functional testing is an crucial part of this process. What is more,
embedded software exhibits few of the restrictions of GPGPUs, due
to the restrictions of embedded hardware.

2 BACKGROUND & RELATEDWORK
Functional software testing, also known as black-box testing, is the
type of testing which verifies that the developed system behaves as
intended. It involves the execution of the tested functionality with
different inputs, which constitute the test cases, and checking that
the results are as expected.

Using GPUs in software testing has gotten relatively little atten-
tion in literature. Existing approaches are mainly concerned with
reducing the size of the test suite and/or prioritising test cases. For
example, [10] proposes a parallel algorithm to accelerate test case
generation using GPUs, while [3, 9] present parallel algorithms for
test-suite minimisation and test case prioritisation. Both approaches
aim to accelerate the testing process by focusing on the test suite -
the first on its generation and the second on reducing its size.

In contrast, our work focuses on using GPUs for test execution,
leaving the test suite unchanged. This idea is first proposed in [6]
and is extended in our existing work [7, 8].

Figure 1: Design of ParTeCL

https://doi.org/10.1145/3183440.3190337
https://doi.org/10.1145/3183440.3190337

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Vanya Yaneva

3 PARTECL: PARALLEL TESTING IN OPENCL
ProgrammingGPUs requires the use of specialist low-level program-
ming models, such as CUDA [4] and OpenCL[2], making executing
tests on the GPU unavailable to the general programmer. To ad-
dress this, we present ParTeCL - a compiler framework, which
automatically generates OpenCL code from sequential C embedded
applications and launches their tests on the GPU. It consists of
two components, illustrated in Figure 1: (1) ParTeCL CodeGen
is a tool to generate OpenCL code executable on the GPU and (2)
ParTeCL Runtime is a system to execute the tests.

ParTeCL CodeGen wraps the embedded C code into an OpenCL
kernel, abstracting away low level GPU details, making the ap-
proach accessible to all programmers, even those unfamiliar with
OpenCL. What differentiates it from other code-generation tools
targeted at GPUs is that it does not parallelise the application. In-
stead, it launches different instances of the sequential program in
parallel, mapping the test cases to the GPU threads.

ParTeCL also allows the automatic transformations of program
features typically unsupported on the GPU, improving the scope of
the approach. Such features currently supported by ParTeCL are
standard input and output, assignment to global scope variables
and standard library calls. In addition, usability is further improved
by ParTeCL Runtime, which launches test executions on the GPU,
thus completely automating the testing process.

ParTeCL’s implementation uses the Clang compiler’s LibTool-
ing library [1] to perform the code generation. The source code
is hosted on https://github.com/wyaneva/ParTeCL-CodeGen and
https://github.com/wyaneva/ParTeCL-Runtime. Thorough presen-
tation of the tool’s functionality and current limitations can be
found in our existing papers [7, 8].

4 EXPERIMENTS & RESULTS
To check the feasibility and performance of our approach on C
programs from the embedded systems domain, we perform em-
pirical evaluation on 9 applications from the automotive and tele-
com domains of the EEMBC industry-standard benchmarks for
embedded systems [5]. For each benchmark, we randomly generate
131,072 unique test inputs. We assess three aspects in our evalua-
tion: speedup over single and multi-core CPU execution, overhead
of using a GPU, and correctness.

We use an Intel(R) Xeon(R) CPU with 8 cores at 2.60 GHz and
16 GB RAM, compiling all programs with GCC using the highest
optimization level (-O3). The GPU we use is the NVidia Tesla K40m
with 15860 work items, spread across 15 compute units, operating
at 745 MHz and has 12 GB global memory and 50 KB local memory.

Speedup. Figure 2 shows the speedup achieved by our approach
when compared to a single CPU over increasing sizes of the test
suite. As expected, since the GPU is able to utilise more threads as
test cases are added, the speedup increases with the size of the test
suite, reaching up to 37× when compared to a single GPU, for some
benchmarks. The figure also shows that there is a large variety in
the degree of speedup achieved by the different benchmarks, the
reasons for which are discussed in [7].

Overhead. We measured the overhead of transferring test case
inputs and results between CPU and GPU memory and imple-
mented strategy for transferring test data in chunks, overlapping
data transfer and test execution times. Figure 3 shows that this strat-
egy improves the achieved speedup in all benchmarks, bringing
the highest value from 37× to up to 53×. It also shows the average
speedup achieved by our approach: it is 16× over single thread
performance across all benchmarks, which is significantly better
than an 8 core CPU which achieves an average speedup of 7×.

Figure 2: Speedup on the GPU vs single thread execution for
10 different test suite sizes.

Figure 3: Speedup of GPU and multi-core CPUs over single
CPU core.

Correctness. For each subject program, we collected the test case
outputs from the CPU and GPU executions across all test suites.
Each test suite was executed 100 times on the GPU and CPU. We
found that for all 9 subject programs, with 131,072 test cases each,
the test case outputs between the CPU and GPU executions were
an exact match. We can safely conclude that our framework for
executing tests on the GPU preserves correctness of program execu-
tion for all 9 embedded system benchmarks and test suites in our
experiment.

Detailed discussion of all experiments and results can be found
in our paper [7].

5 FUTUREWORK
There are multiple ways in which this work can be extended.

Extend evaluation.While our speedup results are very promis-
ing, the EEMBC benchmark applications are relatively small, ex-
ecuting within seconds. To better demonstrate the impact of our
approach, we plan to extend our evaluation to larger and longer-
running C programs.

Apply to other domains. We plan to extend our evaluation to
domains outside of embedded systems, adding support in our tools
for features such as dynamic memory allocation and recursion.

Build a classifier. As seen in our evaluation, some programs
achieve faster testing on the GPU than others. As part of our related
work, we plan to build a classifier for programs suitable for testing
on the GPU, based on program and test features.

https://github.com/wyaneva/ParTeCL-CodeGen
https://github.com/wyaneva/ParTeCL-Runtime

Compiler-Assisted Test Acceleration Using GPUs ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] Clang. 2018. Clang 6 LibTooling Documentation. (2018). http://clang.llvm.org/

docs/LibTooling.html
[2] The Khronos Group. 2018. OpenCL. (2018). https://www.khronos.org/opencl/
[3] Zheng Li, Yi Bian, Ruilian Zhao, and Jun Cheng. 2013. A Fine-Grained Parallel

Multi-objective Test Case Prioritization on GPU. In SSBSE. Springer.
[4] NVidia. 2018. CUDA Programming Guide. (2018). http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html
[5] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. 2009. A

Benchmark Characterization of the EEMBC Benchmark Suite. IEEE Micro 29, 5
(2009), 18–29. https://doi.org/10.1109/MM.2009.74

[6] Ajitha Rajan, Subodh Sharma, Peter Schrammel, and Daniel Kroening. 2014.
Accelerated test execution using GPUs. In ACM/IEEE ASE’14. 97–102.

[7] Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. 2017. Compiler-assisted
Test Acceleration on GPUs for Embedded Software. In Proceedings of the 26th
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
2017). ACM, New York, NY, USA, 35–45. https://doi.org/10.1145/3092703.3092720

[8] Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. 2017. ParTeCL: Parallel
Testing Using OpenCL. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2017). ACM, New York, NY,
USA, 384–387. https://doi.org/10.1145/3092703.3098227

[9] Shin Yoo, Mark Harman, and Shmuel Ur. 2011. Highly Scalable Multi Objective
Test Suite Minimisation Using Graphics Cards. In SSBSE. Springer, 219–236.
http://dl.acm.org/citation.cfm?id=2042243.2042271

[10] Zhao Yu, Jae-Han Cho, Byoung-Woo Oh, and Lee-Sub Lee. 2013. Parallel Algo-
rithm for Generation of Test Recommended Path using CUDA. International
Journal of Engineering Science & Technology 5, 2 (2013).

http://clang.llvm.org/docs/LibTooling.html
http://clang.llvm.org/docs/LibTooling.html
https://www.khronos.org/opencl/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1109/MM.2009.74
https://doi.org/10.1145/3092703.3092720
https://doi.org/10.1145/3092703.3098227
http://dl.acm.org/citation.cfm?id=2042243.2042271

	Abstract
	1 Research Problem & Motivation
	2 Background & Related Work
	3 ParTeCL: Parallel Testing in OpenCL
	4 Experiments & Results
	5 Future Work
	References

