
ParTeCL: Parallel Testing using OpenCL
Vanya Yaneva

University of Edinburgh, UK
vanya.yaneva@ed.ac.uk

Ajitha Rajan
University of Edinburgh, UK
arajan@staffmail.ed.ac.uk

Christophe Dubach
University of Edinburgh, UK
christophe.dubach@ed.ac.uk

ABSTRACT
With the growing complexity of software, the number of test cases
needed for effective validation is extremely large. Executing these
large test suites is expensive and time consuming, putting an enor-
mous pressure on the software development cycle. In previous work,
we proposed using Graphics Processing Units (GPUs) to accelerate
test execution by running test cases in parallel on the GPU threads.
However, the complexity of GPU programming poses challenges
to the usability and effectiveness of the proposed approach.

In this paper we present ParTeCL - a compiler-assisted frame-
work to automatically generate GPU code from sequential programs
and execute their tests in parallel on the GPU. We show feasibil-
itiy and performance achieved when executing test suites for 9
programs from an industry standard benchmark suite on the GPU.
ParTeCL achieves an average speedup of 16× when compared to a
single CPU for these benchmarks.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Source code generation; • Computer systems orga-
nization → Embedded software;

KEYWORDS
Functional testing, GPUs, Embedded software, Compilers, Auto-
mated testing
ACM Reference format:
Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. 2017. ParTeCL: Parallel
Testing using OpenCL. In Proceedings of 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis , Santa Barbara, CA, USA, July
2017 (ISSTA’17-DEMOS), 4 pages.
https://doi.org/10.1145/3092703.3098227

1 INTRODUCTION
Testing to ensure the software meets its requirements is a notori-
ously hard and time consuming process, often comprising 50% of the
cost of software development [2, 6]. As the scale and complexity of
software increases, the number of tests needed for effective valida-
tion becomes extremely large, delaying development and hindering
programmer productivity with time consuming test runs.

To combat this problem, industry is moving towards distribut-
ing test execution among multiple machines, executing them con-
currently to reduce execution time of the entire test suite. This
approach, however, is costly in terms of resources, infrastructure,
maintenance and energy consumed. Present day commodity par-
allel accelerators, such as Graphics Processing Units (GPUs), offer

This work was supported by grant EP/L01503X /1 from EPSRC.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5076-1/17/07. . . $15.00
https://doi.org/10.1145/3092703.3098227

enormous computing power while also being cheap, easily avail-
able and energy efficient. A single GPU offers thousands of parallel
threads with the potential to execute a large number of test cases
concurrently. However, GPUs are notoriously hard to program and
require significant expertise and a thorough understanding of the
hardware and programming model to unlock their potential.

We plan to address these problems in the context of test execution
using our ParTeCL framework. ParTeCL has the following goals,

(1) Increase the usability and feasibility of GPUs for test ex-
ecution.

(2) Increase the performance and effectiveness with compiler
optimisations that analyse the tests and the program.

Our recently accepted paper [10] in themain research track of ISSTA
2017 presents empirical evaluations of our approach and discusses
the performance and effectiveness of using GPUs for test execution.
In this paper, we tackle the feasibility and ease of use challenge by
designing a framework that allows test cases to be automatically
launched on the GPU without requiring any GPU programming
knowledge and improving supported program features.

Users. ParTeCL’s envisioned users are software engineers and
testers of systems with large numbers of functional tests. ParTeCL
does not require software engineers to have GPU programming
knowledge.

2 RELATEDWORK
There has been no work in the past examining the use of GPUs
to accelerate test execution and our paper [7] was the first in ex-
ploring this possibility. The approach in [7], however, manually
transforms the program and tests to run on the GPU. This approach
is incomplete in tackling GPU limitations with respect to ease of
programming, unsupported program features, and performance
optimizations.

GPU programming poses many challenges for the developer,
both in terms of programmability and performance. The use of low-
level programming models, such as CUDA and OpenCL, requires
familiarity with the architecture in order to write correct parallel
code, and effective optimizations in order to reach the full per-
formance potential of the GPU. Previous research addresses these
challenges by proposing high-level programming frameworks, com-
pilers and code generation tools. For instance, [8, 9] introduce and
evaluate a framework, which automatically generates low-level
OpenCL code from high-level parallel primitives. Another example
is SYCL [3], which provides a high level-abstraction of OpenCL to
allow programmers to write GPU code in standard C++.

These existing tools and frameworks provide high-level mecha-
nisms to both discover and express parallelism for the GPU. They
are, however, not suited for our purposes since the need in our
approach is not identification of parallelism, as that is inherent
in test execution - the test cases are directly mapped to the GPU
threads. The need lies in a code generation tool that will take the
CPU program and transform it into an OpenCL kernel, without
affecting the core program functionality, while also launching it
with a different test case on each GPU thread. None of the existing
tools can provide this capability. In the next sections, we describe
the design and implementation of our framework that addresses
these needs.

384

https://doi.org/10.1145/3092703.3098227
https://doi.org/10.1145/3092703.3098227

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA Vanya Yaneva, Ajitha Rajan, and Christophe Dubach

3 DESIGN & IMPLEMENTATION
ParTeCL consists of two systems, illustrated in Figure 1.

1) ParTeCL CodeGen - a code generation tool: It translates
the tested C program to an OpenCL kernel. It also generates data
structures and functions, used by the runtime, to transfer test cases
and results between the CPU and GPU memories.

2) ParTeCL Runtime - a test execution system: It uses the
OpenCL kernel generated by ParTeCL CodeGen to launch the test
cases on the GPU in the following steps: (1) Read the test cases and
transfer them to the GPU memory. (2) Build the generated OpenCL
kernel and launch it in parallel on the GPU threads. (3) Transfer
the testing results back to the CPU for inspection.

ParTeCL Runtime

Runtime
parser

Test cases
(in CSV format)

ParTeCL
CodeGen

Unmodified
source files

Config file

Read test cases

Memory
structures

Put in an array and
transfer to GPU memory

Build OpenCL kernel & launch
tests on the GPU threads

Transfer results to CPU
memory & check

OpenCL
kernel

Figure 1: ParTeCL: automated test execution on the GPU.

We describe the above two systems in Section 3.1 using a simple
use case program. Section 3.2 presents code transformations sup-
ported by ParTeCL, and Section 3.3 discusses the implementation
of the two systems.

3.1 Use Case
To help describe ParTeCL, we use a simple C program, shown
in Figure 2. The example program reads a string and a character
through standard input, str and ch, and counts the number of
occurances of the character in the string. It prints the results to
standard output. A test case for this programwould consist of values
for the string and the character, and the expected result would be a
value for the variable occurs.

User inputs required by ParTeCL are discussed in Section 3.1.1.
We describe the workings of the two systems, ParTeCL CodeGen
and ParTeCL Runtime, using the example program, in Sections 3.1.2
and 3.1.3 respectively.

3.1.1 User Inputs. To launch the test cases using ParTeCL, the
user needs to supply three inputs: the unmodified source code for
the tested program, a configuration file and the test cases.

Configuration File. Describes the test case inputs and results
for the tested program. It is used by ParTeCL CodeGen to gener-
ate the data structures which are used to transfer test inputs and
results between the CPU and GPU memories. Figure 3 presents
the configuration file for the example program. The configuration
shows that the program takes two inputs, a string and a character,
through the standard input, and produces a single integer result,
which corresponds to the occurs variable. ParTeCL supports the
use of both built-in and custom data types, as well as pointers and
arrays for the test case inputs and results.

Figure 3 also shows the data structures generated by ParTeCL
CodeGen: struct partecl_input for the test case inputs and
struct partecl_result for test case results.

Finally, the configuration is used to generate a parser for the
ParTeCL Runtime, which is used to read values for the test cases
and assign them to members of the generated memory structures.

Test Cases. ParTeCL assumes that the test cases are provided in a
CSV (Comma Separated Value) file where, (1) each row corresponds
to a test case, (2) first column contains the id of the test case, (3)
subsequent columns contain the input variables, in the order in
which they are given in the configuration file.

For the example in Figure 2, a sample CSV file with 5 test cases
is presented below,

1 <"Tests are important." <"t"
2 <"" <"a"
3 <"bbbbbbbbbbbbbbbbb" <"b"
4 <"0 + 0 = 0" <"0"
5 <"Hello, World!" <"!"

where the values for inputs str and ch for test case 1 are “Tests are
important.” and “t” respectively, for test case 2 they are an empty
string and “a”. The ’<’ symbol denotes that both these inputs are
read through standard input in the program being tested. ParTeCL
Runtime also supports custom data structures and arrays for the
test case inputs. Within the CSV, users can also choose to provide
test case data in separate files.

3.1.2 ParTeCL CodeGen. In addition to using the configuration
to generate the memory structures and test case parser, ParTeCL
CodeGen also generates an OpenCL kernel which executes the
tested program on the GPU.

Figure 2 shows the kernel generated for the example program.
ParTeCL CodeGen changes the signature to the main function,
which now takes two arguments, (1) the test inputs; values for
which are initialised by the CPU, and (2) the test results, which
will be calculated by the kernel. It uses the memory structures
partecl_input and partecl_result, generated by ParTeCLCode-
Gen. On lines 9 − 11, each GPU thread, identified by its global id
(idx), selects a different test case for execution (input_gen) as well
as a different test result, in which to record its outputs (result_gen).
On lines 19 and 21, ParTeCL CodeGen has replaced reading of the
input parameters from standard input with reading from the input
value for test case input_gen. It also replaces calls to the standard
library functions fgets and fgetc with our custom OpenCL im-
plementation of those functions, which is found in cl-stdio.h.
Finally, the tool adds an assignment of the results of the test, vari-
able occurs, to result_gen.

It is important to note that ParTeCL CodeGen does not change
the core algorithm of the program, only the input/output interface,
thus ensuring that the tested functionality remains the same.

3.1.3 ParTeCL Runtime. Once ParTeCL CodeGen generates the
GPU code, ParTeCL Runtime executes the tests on the GPU in the
following steps:

(1) Reading test cases. ParTeCL Runtime uses the parser gen-
erated by ParTeCL CodeGen to read the values of the test cases
from the user supplied CSV file and stores them in an array of type
sruct partecl_input.

(2) Kernel build and launch. ParTeCL Runtime uses the stan-
dard OpenCL API to transfer the array with test case inputs to GPU
memory, build the OpenCL code generated by ParTeCL CodeGen
and to launch the tests on the GPU.

385

ParTeCL: Parallel Testing using OpenCL ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA

(a) Original C program.
#include <stdio.h>

int main(int argc , char* argv []){
char str [1000] , ch;

printf("Enter a string: ");
fgets(str , 1000, stdin);
printf("Enter a character: ");
ch = fgetc(stdin);

char* str_ptr = str;
int occurs = 0;
while (* str_ptr != '\0'){

if(* str_ptr == ch){
occurs ++;

}
str_ptr ++;

}

printf(" '%c' occurs %d times.\n", ch, occurs);
}

(b) Automatically generated OpenCL kernel.
#include "structs.h"
#include "cl-stdio.h"
//#include <stdio.h>

kernel void main_kernel(
global struct partecl_input* inputs ,
global struct partecl_result* results)

{
int idx = get_global_id (0);
struct partecl_input input_gen = inputs[idx];
global struct partecl_result *result_gen = &results[idx];
int argc = input_gen.argc;
result_gen ->test_case_num = input_gen.test_case_num;
int stdin_count_gen = 0;

char str [1000] , ch;

/* printf ("Enter a string: ");*/
fgets(str , 1000, input_gen.stdin1 , &stdin_count_gen);
/* printf ("Enter a character: ");*/
ch = fgetc(input_gen.stdin2 , &stdin_count_gen);

char* str_ptr = str;
int occurs = 0;
while (* str_ptr != '\0'){

if(* str_ptr == ch){
occurs ++;

}
str_ptr ++;

}

/* printf ("'%c' occurs %d times.\n", ch, occurs);*/
result_gen ->occurs = occurs;

}

Figure 2: Example of converting a C program into an OpenCL GPU kernel using ParTeCL CodeGen.

(a) Configuration file.
stdin: char* stdin1
stdin: char stdin2
result: int occurs variable: occurs

(b) Generated data structures - file structs.h
typedef struct partecl_input{

int test_case_num;
int argc;
char* stdin1;
char stdin2;

} partecl_input;

typedef struct partecl_result{
int test_case_num;
int occurs;

} partecl_result;

Figure 3: Configuration file and generated data structures for the example program.

(3) Results validation. Once the GPU kernel has executed, we
transfer results back to the host where the results are validated
against the golden output. Any difference observed is recorded and
presented to the user.

3.2 Code Transformations
While generating the OpenCL kernel, ParTeCL CodeGen performs
code transformations for C features, which are not readily sup-
ported by the OpenCL standard.

Global scope variables. OpenCL does not support assignment
to global scope variables. ParTeCL CodeGen moves them to lo-
cal scope by moving their declarations into the kernel function,
main_kernel, and passing them as arguments to any functions

using them. By using pointers, the tool ensures that any changes
made to their values would be visible to the all the other functions.

Standard input and output. A value for every standard input
needs to be supplied as part of the test case. ParTeCL CodeGen then
replaces references to the standard input with references to the
memory structures containing the test cases. The same is done with
standard output if the user chooses to save it to the testing results
using an option in the configuraiton file. If they do not, standard
output is commented out.

Command line arguments. Similar to standard input, values
for command line arguments should be supplied as part of the test
case input. ParTeCL CodeGen replaces references to the command
line arguments with references to the corresponding values in the
generated partecl_input structure.

386

ISSTA’17-DEMOS, July 2017, Santa Barbara, CA, USA Vanya Yaneva, Ajitha Rajan, and Christophe Dubach

Standard library calls. The OpenCL standard does not sup-
port calls to the C Standard Library. We have implemented a small
subset of Standard Library functions in OpenCL, namely functions
in ctype.h, string.h and stdio.h, and plan to extend the imple-
mentation to other functions in future work. We took inspiration
from uClibc [1], a very small C standard library typically used for
embedded systems. The code for our implementation is hosted on
https://github.com/wyaneva/clclibc.

3.3 Implementation
ParTeCL CodeGen is implemented in C++14, using the Clang
LibTooling library [4]. It uses LibTooling’s AST Matchers to per-
form sequential compiler passes, which find and transform the
relevant portions of the original program. ParTeCL Runtime is im-
plemented in standard C, using the OpenCL API to perform all
the GPU related operations. The source code for the two systems,
along with instructions to build and execute them, can be found at
https://github.com/wyaneva/partecl-codegen and
https://github.com/wyaneva/partecl-runtime.

4 EVALUATION
We check whether ParTeCL meets its goals by evaluating its per-
formance, correctness and usability.

Performance and effectiveness. In our work in [10], we eval-
uate the performance of GPU test acceleration using ParTeCL on
C programs from the embedded systems domain. We use 9 bench-
marks from the Embedded Microprocessor Benchmark Consortium
(EEMBC), which provides a diverse suite of benchmarks organ-
ised into categories that span numerous real-world applications,
namely automotive, digital media, networking, office automation
and telecom, among others [5].

Figure 4 shows the speedup achieved on the GPU using ParTeCL
when executing test suites of size 131K test cases over each of the
benchmarks. Our experiment in [10] shows that this test suite size
saturates the GPU threads, resulting in highest speedup. To optimise
speedup, ParTeCL Runtime provides the option of transferring test
cases between the CPU and GPU memory in chunks, overlapping
data transfer and test case execution. Figure 4 shows the speedups
achieved on the GPU with and without data transfer overlap. We
compare GPU speedups to those achieved by a multi-core CPU
with 2, 4 and 8 cores (tests distributed using OpenMP).

We found that ParTeCL achieves significant speedup ranging
from 18× to 53×. We found the magnitude of speedup is related
to the computational intensity of the benchmark being executed.
Benchmarks that exhibit a high compute-intensity tend to give high
speedup when executing tests on the GPU. Average GPU speedup
over all benchmarks is 16× as opposed to 6× for an 8-core CPU.

rspeed01

puwmod01
fft00

conven00
tblook01

autcor00
fbital00

viterb00
a2time01

Average

10

20

30

40

50

60

1

S
p

ee
du

p
co

m
pa

re
d

to
a

si
ng

le
C

P
U 2 CPUs

4 CPUs

8 CPUs

GPU (no data transfer overlap)

GPU (data transfer overlap)

Figure 4: Speedup of GPU and multi-core CPUs over single
CPU core. Test suite size 217

Correctness. For each subject program, we collected the test
case outputs from the CPU and GPU executions across all test
suites.We found that for all 9 subject programs, the test case outputs
between the CPU and GPU executions were an exact match. We
can safely conclude that our framework for executing tests on the
GPU preserves correctness of program execution for all 9 embedded
system benchmarks and test suites in our experiment.

Usability and feasibility. A preliminary usability study with
six programmers, with no prior GPU programming knowledge, was
performed to assess ParTeCL’s ease of use. All programmers were
asked to write tests for a simple C application, similar to the one
in the use case in Section 3, and execute them on the GPU using
ParTeCL. They were also asked to rate different aspects of using
ParTeCL, shown in Table 1. Overall, users found the testing process
with ParTeCL clear and easy to follow, demonstrating that ParTeCL
successfully abstracts away the GPU programming details.

Table 1: Ease of use ratings. The scale is from 1 to 5, where 1
is not at all easy and 5 is very easy.

Step in the testing process Rating
Writing test cases in the CSV format 4.00
Writing the configuration file 3.41
Running ParTeCL CodeGen 4.83
Building ParTeCL Runtime 4.85
Running the test cases 4.33
Overall process 3.91

5 CONCLUSION
ParTeCL provides the capability to leverage the computational
power of GPUs for parallel execution of functional tests over C
programs, without any prior GPU programming knowledge. The
tool uses compilation techniques to automatically (1) generate an
OpenCL kernel for the tested program, (2) provide transformations
for C features which are not readily supported on the GPU, and (3)
launch the tests in parallel on GPU threads. Performance evaluation
on 9 embedded systems benchmarks shows that ParTeCL achieves
test execution speedups of up to 53× on the GPU when compared
to a single CPU. Usability evaluation demonstrates that ParTeCL is
easy to use and requires no GPU programming knowledge. Future
work will focus on extending ParTeCL to support further program
features in OpenCL, including dynamic memory allocation, system
calls and recursion.

REFERENCES
[1] E Andersen. 2004. uClibc website. (2004).
[2] Mary Jean Harrold. 2000. Testing: a roadmap. In Proceedings of the Conference on

the Future of Software Engineering. ACM.
[3] Ronan Keryell, Ruyman Reyes, and Lee Howes. 2015. Khronos SYCL for OpenCL:

a tutorial. In Proceedings of the 3rd International Workshop on OpenCL. ACM, 24.
[4] Chris Lattner. 2008. LLVM and Clang: Next generation compiler technology. In

The BSD Conference. 1–2.
[5] Jason A. Poovey, Thomas M. Conte, Markus Levy, and Shay Gal-On. 2009. A

Benchmark Characterization of the EEMBC Benchmark Suite. IEEE Micro 29, 5
(2009), 18–29.

[6] Ajitha Rajan. 2009. Coverage metrics for requirements-based testing. Ph.D. Disser-
tation. University of Minnesota.

[7] Ajitha Rajan, Subodh Sharma, Peter Schrammel, and Daniel Kroening. 2014.
Accelerated test execution using GPUs. In ACM/IEEE ASE’14. 97–102.

[8] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe Dubach. 2016.
Performance Portable GPU Code Generation for Matrix Multiplication. In GPGPU.
ACM Press, New York, 22–31. https://doi.org/10.1145/2884045.2884046

[9] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe Dubach. 2015.
Generating Performance Portable Code Using Rewrite Rules: From High-level
Functional Expressions to High-performance OpenCL Code. In Proceedings of
ICFP 2015. ACM, New York, 205–217. https://doi.org/10.1145/2784731.2784754

[10] Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. To Appear 2017. Compiler-
Assisted Test Acceleration on GPUs for Embedded Software. In Proceedings of
ISSTA 2017.

387

https://github.com/wyaneva/clclibc
https://github.com/wyaneva/partecl-codegen
https://github.com/wyaneva/partecl-runtime
https://doi.org/10.1145/2884045.2884046
https://doi.org/10.1145/2784731.2784754

	Abstract
	1 Introduction
	2 Related Work
	3 Design & Implementation
	3.1 Use Case
	3.2 Code Transformations
	3.3 Implementation

	4 Evaluation
	5 Conclusion
	References

