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Abstract
Functional software testing is a critical task in software engineering, involving the exe-

cution of a large number of test cases for any non-trivial system. This can be extremely

time consuming, making functional testing incompatible with short development cy-

cles. Accelerating test execution by running test cases in parallel on the GPU threads

has been proposed before, but GPU limitations pose challenges to this approach’s ease

of use, scope and effectiveness.

This project propses automating test execution on the GPU as a way to increase its

ease of use and scope. Two systems are developed to facilitate automation. The first is

a code generation tool, called ParTeCL, which generates OpenCL kernel for the tested

program, allowing its execution on the GPU. The second is a CPU runtime, which

executes the test cases by building and launching the auto-generated kernel in parallel

on the GPU threads.

Four benchmark applications from two repositories, containing different C features,

are tested using this approach, demonstrating that ParTeCL generates valid OpenCL

kernels and that testing results produced on the GPU are the same as those output by

the CPU. In addition, a usability study with six programmers is performed, showing

that automation greatly simplifies the testing process. Finally, preliminary performance

results from two benchmarks are gathered and analysed, demonstrating speed-up of up

to 90x for one of the applications and identifying optimisation areas to focus on in

future research, in order to increase the approach’s effectiveness.
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Chapter 1

Introduction

In software engineering, careful testing and verification of the developed system is

a crucial task, which provides confidence in its correctness and quality. However,

rigorous testing of any non-trivial system involves the generation and execution of a

huge number of test cases. This can be extremely time consuming, taking hours, days

and even weeks, making testing impractical and even incompatible with development

schedules. Therefore, accelerating the execution of large software test suites is an

important problem and an active area of research.

This Master’s project focuses on the acceleration of the execution of functional soft-

ware tests - the tests which verify that the system behaves as intended. The current

chapter introduces the challenges behind the acceleration of test execution and presents

the solution proposed in this project, its goals and its contributions. Finally, it outlines

the rest of the dissertation.

1.1 Challenges

Functional software testing involves the execution of the tested functionality with dif-

ferent inputs, which constitute the test cases, and checking that the results are as ex-

pected. For large systems, thorough verification requires a huge number of tests cases,

ideally covering the whole input space, whose execution time on a single processing

unit scales linearly with the size of the test suite, resulting in long testing times.

To accelerate the execution of the test suite, two characteristics of functional testing

1



2 Chapter 1. Introduction

can be exploited:

• Tests are data parallel, as they involve the execution of the same functionality

multiple times on different data inputs.

• Test executions are independent, as the results of one test do not affect the results

of others.

These characteristics make functional tests an ideal candidate for parallel executions.

Tests can be simultaneously executed on separate processing units, reducing total
execution time.

Indeed, parallelisation of test executions exists as a practice [7]. Companies provision

hardware infrastructure for testing and tools to facilitate parallel test runs are being

developed. However, the acceleration achieved is limited by the level of parallelism

available in the hardware. Executing all tests in a test suite simultaneously requires as

many processing units as there are cores. Test suites consisting of thousands of tests

require the equivalent of a super computer. This scaling can get prohibitively expensive

for many companies. What is more, even when the infrastructure is available, some

companies report that up to 90% of it can remain idle [17].

1.2 Proposed Solution

This dissertation examines the use of Graphics Processing Units (GPUs) for parallel

execution of software tests. This approach runs all test cases in parallel, each on a

separate GPU thread. GPUs are both readily available in many desktop systems, thus

considerably cheaper than a parallel CPU testing infrastructure, and capable of execut-

ing thousands of threads simultaneously. In addition, the type of parallelism exhibited

by testing, as seen earlier in Section 1.1, is a natural fit for the GPU hardware. GPUs

have Single Instruction Multiple Data (SIMD) architecture, designed for the indepen-

dent execution of the same instructions over multiple data inputs.

This approach is first proposed in [25]. The paper establishes the feasibility of the idea

by analysing the results produced when testing four embedded systems programs on

the GPU. It demonstrates speed-ups of up to 27x when compared to execution on the

CPU.

However, [25] also recognises that GPUs have a number of limitations which pose
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challenges for the proposed approach:

1. Programming GPUs requires the use of a specialist low-level programming model,

such as OpenCL [1] and CUDA [2], thus it is not available to every programmer.

2. Not all C/C++ features can be readily compiled for execution on the GPU, lim-

iting the scope of applications which can be tested using GPUs. Unsupported

features include standard library calls, recursion and dynamic memory alloca-

tion.

3. The achieved speed-up is limited by factors, such as the chosen GPU block/grid

dimensions, control-flow divergence and data transfers.

Hypothesis

This Master’s project focuses on challenges 1. and 2. It hypothesises that:

Launching tests on the GPU can be automated, which will make it more accessible to

general developers, as it will abstract away the low-level programming model.

A tool is built to automatically generate an OpenCL wrapper for C programs, which al-

lows their execution on the GPU threads. The tool also performs code transformations

for C features which are not supported by the OpenCL compiler.

Thus, it achieves two goals:

• ease of use, as it alleviates the programmer from the need to write low-level GPU

code

• increased scope, as it implements code transformations for C features which are

not readily supported for execution on the GPU.

The tool’s name is ParTeCL, standing for Parallel Testing in OpenCL. It is imple-

mented using the Clang compiler’s LibTooling library [3].

In addition, generic CPU runtime code is developed to build the OpenCL program

output by ParTeCL and launch it together with the test cases in parallel on the GPU

threads.

Finally, the project collects and analyses data for the speed-ups achieved when execut-

ing test cases on GPU, using the tools developed during the project. This analysis is

used as a basis to plan future steps in addressing challenge 3. in the context of PhD
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work.

1.3 Project Goals

This project sets out to achieve the following particular goals:

1. Demonstrate that automation of test launching on the GPU is feasible and pro-

duces correct testing results.

2. Demonstrate that automation allows users to execute tests on the GPU without

the need to understand GPU programming and write OpenCL code.

3. Investigate what performance can be expected and what optimisations may be

beneficial.

1.4 Project Contributions

The project makes the following contributions:

• ParTeCL - a tool which automatically generates OpenCL code for the purposes

of testing; it performs code transformations for features unsupported by the

OpenCL compiler.

• A CPU runtime, which reads test cases, builds the OpenCL program, generated

by ParTeCL, and launches its test cases in parallel on the GPU threads.

• Evaluation on four benchmark applications, demonstrating the following:

– ParTeCL generates valid OpenCL kernels, which can be built and executed

on the GPU without the need to manually edit OpenCL code.

– Testing on the GPU, using the auto-generated OpenCL kernels, produces

the same results as testing on the CPU.

• Performance analysis on the speed-ups achieved, using the auto-generated OpenCL

kernels.
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1.5 Dissertation Outline

The rest of the dissertation describes the work undertaken to achieve the above goals.

In particular, Chapter 2 provides relevant background information on functional test-

ing, GPU architecture and programming models and the Clang LibTooling library.

Chapter 3 presents existing work in the areas of test case acceleration, parallel execu-

tion of tests on the GPU and auto-generation of GPU code, and relates it to the goals

of this project.

Chapter 4 presents the process of executing tests on the GPU and uses this to introduce

the design and implementation of ParTeCL and the CPU runtime.

In chapter 5, four benchmark applications are used to evaluate the feasibility and cor-

rectness of using the developed systems for test execution on the GPU. Performance

data from two of them is gathered and analysed in order to investigate areas for opti-

misation. A usability study with six software developers is carried out to evaluate the

ease of use of the proposed automatic approach.

Finally, Chapter 6 summarises the work carried out in this dissertation, suggests future

work for the PhD phase of the project, and briefly reflects on the achievements of the

project and lessons learnt during it.





Chapter 2

Background

To allow full understanding of the problem and solutions investigated in this Master’s

project, the current chapter provides relevant background information. It starts by de-

scribing functional testing in detail, the importance of an exhaustive test suite and the

testing practices in which it is used. It briefly describes the GPU architecture and pro-

gramming models, focusing on aspects most relevant to testing. Finally, it introduces

the Clang compiler and LibTooling library [3] which are used in the implementation

of ParTeCL.

2.1 Functional Testing

Functional testing is a method of testing, based on the functional specifications for

the system’s behaviour [37]. It aims to verify that the program behaves as intended by

executing it using different inputs and checking that the outputs are as expected. Based

entirely on the values of the inputs and outputs, functional testing does not involve the

program’s design or implementation structure. Thus, it is also referred to as black-box

testing.

Figure 2.1 illustrates functional testing. A test suite consists of test cases, each of

which is a different input to the tested program. The program is executed multiple

times on the different inputs, and the produced outputs are examined. As discussed in

Sections 1.1 and 1.2, the data parallelism and independence of test executions make

functional testing suitable for parallelising on the GPU.

7



8 Chapter 2. Background

Figure 2.1: Functional testing.

There are many methods for the generation of functional tests, described in [37], whose

aim is to discover faults in the implemented system. Theoretically, a full test suite that

verifies the correctness of the system’s behaviour will constitute of the entire input

space of a program. In practice, this is infeasible to generate and execute, as even

trivial programs would have many millions test cases. For example, a single 32-bit

integer input has 232 possible values. Thus, analytical processes for test case genera-

tion are employed. They involve partitioning of the input space based on all possible

behaviours of the program and selecting representative test cases, which are likely to

discover faults. As [37] states, this is a human-intensive and error-prone process, as

there is always the chance of missing an important test case. Intuitively, the finer the

partitioning and the larger the test suite, the higher its fault finding potential.

Since functional testing can be applied at any level of system granularity, from individ-

ual functions through modules to entire programs, it is often used in multiple testing

practices, including unit testing, system testing and regression testing. Unit testing

checks the behaviour of the smallest functional units of a program, usually individual

functions and methods, while system testing checks the behaviour of the system as a

whole. Regression testing is a specialised instance of system testing, which focuses on

ensuring that changes of the existing code do not introduce new faults in the system.

In modern software development practices, regression testing is used regularly, as soon

as a change to the program is made. Development teams often employ overnight builds

and test runs, making the need of time efficient test executions even greater. Thus, the

current project focuses on system testing, but the approaches used in it can also be
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extended to finer granularity.

2.2 GPU Architecture and Programming Models

GPUs are a parallel accelerators, used in High Performance Computing (HPC). Orig-

inally designed for graphics computations, they have been successfully employed in

some areas of general purpose computing.

Generally, GPUs consist of one or more compute units (aka streaming multiproces-

sors), which in turn contain one or more processing elements (aka streaming proces-

sors). The processing elements execute the individual threads. The functions executed

by the GPU threads are called kernels. In the GPU programming models, each thread

executes the same kernel with different input data, which fits the execution of func-

tional software tests, as seen in Section 2.1.

As compute units share the same instruction counter, execution on a single compute

unit is done in lock-step, meaning that each thread executes the same instruction at

all times. If there is control-flow divergence across threads within the compute unit,

divergent instructions will be serialised, impacting performance negatively. This has

implications for testing, when test cases take different control-flow paths in the tested

program. While researching methods to mitigate this effect is outside the scope of the

current project, it is planned to be included in future PhD work (Section 6.3).

GPUs have a memory hierarchy:

• Global memory. Large and slow, allocated by the CPU. Accessed by all threads

in all compute units.

• Constant memory. Like global memory, but allows only read access.

• Local memory. Local to compute units, shared among the threads in a single

unit.

• Private memory. Private to individual threads.

Memory is explicitly managed int the CPU and GPU code and this can have significant

impact on performance.

The two most widely used programming models for GPU programming are CUDA [2]

and OpenCL [1]. Based on the C/C++ programming languages, they expose low-level
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hardware details, which require the programmer to explicitly express the parallelism

in their algorithms. The mapping of parallelism to compute units and threads is also

explicitly managed. To do it in OpenCL, the programmer supplies work-group di-

mensions for the kernel execution, which can have a huge impact on the performance

achieved on particular GPU architectures.

OpenCL is the programming model chosen for this project, since it provides cross-

platform functional portability, which could potentially enable future research on test-

ing using different accelerator architectures. The C-like language means that to trans-

late a C program into an OpenCL kernel, generally, only a simple decoration of the

code with OpenCL attributes is necessary.

However, GPUs are specialised and not all C/C++ features are supported by the OpenCL

compiler, which has implications for the scope of C applications which can be tested

on the GPU. ParTeCL’s design takes this into consideration and includes methods for

to handle it. Particular discussion on this is included in Section 4.4.

2.3 Clang LibTooling

LibTooling [3] is a C++ infrastructure, aimed at the development of standalone front-

end compiler tools, built on top of the Clang compiler.

LibTooling uses Clang to build the program’s Abstract Syntax Tree (AST) and pro-

vides two interfaces for using the AST - RecursiveASTVisitor and AST Matchers.

As its name suggests, the RecursiveASTVisitor allows the recursive traversal of the

AST. It provides hooks which visit the AST nodes, based on their types, and allow

the developer to implement particular actions for specific node types. In contrast, The

AST Matchers allow the programmer to find AST nodes, based on specific patterns,

which are described using a Domain Specific Language (DSL). The AST Matchers are

usually implemented together with corresponding AST Handlers, which contain the

actions the tool takes for the matched AST nodes.

ParTeCL uses the AST Matchers and AST Handlers. This is presented in Section 4.5.

Finally, LibTooling provides a Rewriter class, which facilitates source code changes,

by exposing deletions, insertions and replacements in the original source code, based

on source locations, which are part of the Clang AST nodes.



2.4. Summary 11

2.4 Summary

This chapter presented brief background information on functional testing, the GPU

architecture and programming models and the Clang LibTooling library [3].

The information on functional testing aims to aid better understanding of its impor-

tance and the reasons which make it time consuming. The description of functional

tests in particular should be a useful background for understanding how they are input

and executed by the automatic systems developed in this project.

The brief introduction to GPU architecture and programming models aims to help the

reader understand the particular approaches to test execution on the GPU employed

in this project, as well as the design decisions behind the developed systems and the

performance challenges, which can be encountered.

Finally, as LibTooling is used for the implementation of ParTeCL, it was briefly de-

scribed in order to show how it fits the purposes of the tool.





Chapter 3

Related Work

The problems addressed in this project and the proposed solutions fall within three

separate areas of research. The broad problem belongs to the area of acceleration of

software testing. The proposed solution, execution of test cases in parallel on the GPU

threads, is a novel approach to this problem, recently presented in [25], but other ap-

proaches which make use of GPUs also exist. Finally, this project’s main contribution,

ParTeCL, relates to research in auto-generation of GPU code.

This chapter provides an overview of the existing work in all three areas and discusses

and the ways in which it relates to the work carried out in this project.

3.1 Acceleration of Software Testing

Traditional approaches to acceleration of software testing include test suite minimisa-

tion, test case selection and test case prioritisation. A comprehensive survey is pre-

sented in [35]. The current section presents only a brief summary to enable comparison

with the approach presented in this dissertation.

The particular goals of the existing approaches are:

• remove obsolete or redundant test cases (test suite minimisation)

• choose a subset of test cases to execute in a particular scenario (test case selec-

tion)

13



14 Chapter 3. Related Work

• reorder the test suite according to some desirable property (test case prioritisa-

tion)

Test suite minimisation relies on heuristics to determine the minimum number of test

cases which satisfy some criteria, usually a measurement of code coverage. A large

body of work exists in identifying and evaluating different heuristics and algorithms

[14, 34, 31], as well as optimising their fault detection [19].

Test case selection is a technique similar to test suite minimisation, but instead of

focusing on a single version of the tested program, it aims to select test cases covering

the changes between the current and a previous version of the application. Particular

methods have been developed based on multiple techniques and criteria, including

data-flow analysis, program dependence graphs and code coverage [12, 29, 22].

Finally, test case prioritisation reorders test cases based on some desirable criterion,

so that testing yields maximum useful results as early in the testing process as pos-

sible. The desirable criteria include structural coverage, rate of fault detection and

specification requirements [30, 10, 21].

Existing work also combines some of the techniques in order to achieve test suites

with better prioritisation, reaching code coverage faster, and faster testing time, due to

minimisation [32].

As traditional approaches involve the use of heuristic algorithms, whose execution time

grows with the size of the test suite, GPUs have been used to accelerate some of them.

In particular, [36] presents a modified parallel evolutionary algorithm for test suite

minimisation. It is implemented in CUDA and executed on an Nvidia GPU, achieving

a speed-up of up to 25x for large applications. Another example is [38], which uses

GPUs to accelerate the generation of new test cases.

A common aspect of all of the above approaches is the fact that they manipulate the test

suite. While they achieve success in reducing test case numbers, and therefore overall

testing time, they can have a detrimental effect on the effectiveness of testing. This

has been observed in multiple empirical studies, which discover that the fault finding

capabilities of a test suite correlate to its size [18] and removing test cases from the

testing process leads to reduced fault detection [28, 13], making the existence of large

test suites, as well as the execution of all test cases, highly desirable.
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3.2 Parallel Test Case Execution on the GPU

In contrast to the approaches examined in Section 3.1, the current project suggests

executing the entire test suite on the GPU by running all test cases in parallel on the

GPU threads, thus reducing total execution time.

As discussed in Chapter 1, [25] presents the approach and performs preliminary studies

on four benchmark applications from the embedded-systems domain. The paper makes

four notable contributions:

• It shows speed-ups between 2 and 27 times in comparison to execution on the

CPU.

• It shows that the outputs achieved by the executions on the GPU are the same as

those achieved on the CPU.

• It shows that factors such as the chosen grid and block dimensions, the time

for data transfer between the host and device and the degree of control flow

divergence in the tested program play an important role in the achieved speed-

up.

• It identifies the GPU limitations presented in Section 1.2, which pose challenges

to the scope, effectiveness and ease of using GPUs for test execution.

This is a novel and promising idea and the current project continues this work by

addressing some of the challenges and proposing solutions to others. In particular,

it proposes automatic generation of the low-level code, which executes the tests in

parallel on the GPU.

3.3 Code Generation for the GPU

Even outside of testing, GPU programming poses many challenges for the developer,

both in terms of programmability and performance. The use of low-level programming

models, such as CUDA and OpenCL, requires familiarity with the architecture in order

to write correct parallel code, and fine-grained optimisations in order to reach the full

performance potential of the GPU. Previous research addresses these challenges by

proposing high-level programming frameworks, compilers and code generation tools.

The current section briefly presents some of them.
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For example, [33, 26] introduce and evaluate a framework, which automatically gen-

erates low-level OpenCL code from high-level parallel primitives. The work defines

the primitives, which correspond to parallel functionalities, e.g. map and reduce, as

well as a functional-style programming language which is used by the programmer to

express parallel algorithms.

Another example is SYCL [4], which provides a high level-abstraction of OpenCL to

allow programmers to write GPU code in standard C++. It includes C++ templates and

libraries, which express parallel functions, and SYCL compilers which generate code

executable on the GPU.

Purely compiler-based approaches include [8], targeting CUDA, and [11], aimed at

lower-level code generation. Both of them use the polyhedral model for loop paralleli-

sation in order to transform portions of the program into parallel code to be executed

on the GPU.

The existing tools and frameworks provide high-level mechanisms to both express and

discover parallelism and generate efficient parallel code for the GPU. In contrast, the

parallelism inherent to functional testing is straightforward - the test cases are mapped

to the GPU threads, which execute separate instances of the tested program. The code

generation tool needs to wrap the tested functionality into an OpenCL kernel and trans-

form C features for compilation by the OpenCL compiler. In other words, the tool

developed in this project has a goal different to those of the existing solutions. While

they aim to generate performant parallel code, this project’s goal is to transform an

application written for the CPU into a GPU kernel.

3.4 Summary

This chapter presented existing approaches to accelerating test execution, as well as

the ways in which GPUs have been applied to them. These approaches focus on ma-

nipulating the test suite, either by minimising it, or by prioritising and selecting test

cases for execution. However, they have been shown to reduce the effectiveness of

testing, demonstrating that executing the whole test suite is highly desirable.

In contrast, the proposed approach executes the entire test suite and reduces total exe-

cution time by running test cases in parallel on the GPU threads. Its feasibility has been
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established in previous work, but limitations of the GPU architecture and programming

models pose challenges to its effectiveness, scope and ease of use.

The current work addresses some of these challenges by proposing auto-generation of

the OpenCL code which is executed on the GPU threads. Whereas previous research

in code generation for the GPU proposes high-level frameworks for the expression of

parallelism, the parallelism inherent in software testing is simple. What is required is

translating the tested program in OpenCL to allow its execution on the GPU. Thus, a

new tool, ParTeCL, to perform these modifications is developed in this project.





Chapter 4

Design & Implementation

The current chapter describes the design and implementation decisions behind ParTeCL

and the CPU runtime, which launches the test cases in parallel on the GPU threads. It

starts with a high level overview of the process of testing on the GPU and the two sys-

tems involved in it. It continues with descriptions of the individual inputs and outputs

of ParTeCL and of the CPU runtime. The chapter then discusses the ways in which var-

ious C features are supported for execution on the GPU - either readily, out of the box,

or through code transformations performed automatically by ParTeCL. It also presents

C features which currently aren’t supported and discusses ways in which they can be

addressed in the future. Finally, the chapter describes the implementation of ParTeCL,

based on the Clang compiler.

Example Program: add.c

To illustrate the design and implementation details presented in this chapter, a simple

example is used throughout it.

1 int add(int a, int b){

2 return a + b;

3 }

4

5 int main(int argc , char* argv[]){

6 if(argc <= 2){

7 printf("Please , provide two integers.\n");

8 return 0;

9 }

10

19
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11 int a = atoi(argv[1]);

12 int b = atoi(argv[2]);

13 printf("%d + %d = %d\n", a, b, add(a, b));

14 }

This program takes two integers command line arguments, adds them together, and

prints the result to standard output.

A functional test case for this program will provide any two input integers to check

that the program indeed computes their sum correctly.

4.1 High-Level Overview

As seen Section 2.1, executing functional tests on the CPU consists of writing of the

test cases as inputs to the tested program, building and executing the program on the

test case inputs and checking that results are as expected.

In contrast, executing tests on the GPU requires the following steps:

• Translate the tested program into an OpenCL kernel.

• Write a CPU runtime to

– transfer the test cases to the GPU memory.

– build the OpenCL kernel.

– launch the tests in parallel on the GPU threads.

– transfer the testing results back to the CPU memory and check that they are

as expected.

• Build and execute the CPU runtime.

Thus, there are two major differences in the testing process:

1. The tester no longer builds and executes the tested program. They translate it

into an OpenCL kernel instead and build and execute the CPU runtime.

2. The test cases are no longer taken directly as inputs by the tested program. They

are read by the CPU runtime and transferred to the GPU memory, where the

OpenCL kernel uses them as inputs. Thus, they need to to be written in a format,
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which is parsed by the CPU runtime. For this project, the format chosen is CSV.

It is presented in detail in Section 4.3.

This project provides two systems, which automate the testing process and abstract

away the GPU programming details. They are:

• ParTeCL - a code generation tool, presented in Section 4.2.

inputs: the source code of the tested program and a configuration file.

functions: generates the OpenCL kernel, executed by the GPU threads, the data

structures used to transfer test cases and results between the CPU and GPU mem-

ories and a small part of the CPU runtime.

• CPU runtime - a test execution system, presented in Section 4.3.

inputs: test cases, in CVS format, and OpenCL kernel, generated by ParTeCL.

functions: read the test cases and transfer them to the GPU memory; build the

OpenCL kernel and launch it in parallel on the GPU threads; transfer testing

results back to the CPU for inspection.

Figure 4.1 illustrates the two systems.

The CPU Runtime

structs.h

test.cl

cpu-gen.h

Generated code

cpu-code.c

cpu-code.h

Generic code

Test cases 
(in CSV format)

ParTeCL
Unmodified
source files

Config file

Test executions on the GPU 

Figure 4.1: Parallel Testing on the GPU: automation
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4.2 ParTeCL

The current section describes ParTeCL by presenting its inputs and outputs. Imple-

mentation details are presented in Section 4.5.

4.2.1 Inputs

ParTeCL takes two inputs, supplied by the user:

• the unmodified C source code of the program which is being tested

• a configuration file, which describes the test cases.

The unmodified C source code is used to generate the OpenCL kernel, which executes

on the GPU. ParTeCL changes the signature of the main function to an OpenCL kernel

function and performs automatic transformations on the code, which are described in

Sections 4.2.2 and 4.4.

The configuration file provides information to describe the testing setup. It is necessary

for the generation of the data structures, which are used to pass test case data between

CPU and GPU memory. The data structures are presented in Section 4.2.2.

In particular, the configuration file contains the following:

1. the name of the function, which is being tested

2. description of the inputs to the tested program

3. description the expected result

ParTeCL parses the configuration file, line by line, with the help of the keywords shown

in Table 4.1.

For example, the configuration file for the add.c program would look like this:

1 function -name: add RET

2 input: int a 1

3 input: int b 2

4 result: int c

It tells ParTeCL that the function to test is add and it returns the result, which is

being tested (the RET keyword). If, for example, if add didn’t return the result, but
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Keyword Usage Examples

function-name The name of the C function

which is being tested.

RET The tested function returns the

tested output.
function-name: add RET

ARG The tested function writes the

tested result in one of its ar-

guments; followed by an inte-

ger index to specify which ar-

gument.

function-name: add ARG 3

input A command line input: type,

name and index on the com-

mand line.

input: int a 1

stdin Standard input inputs (stdin).

They need to be supplied by

the user in a single string, sep-

arated by a new line character.

More details in Section 4.2.2.

stdin: char* stdin1

result The result that is being tested:

type and name.
result: int c

Table 4.1: Configuration file keywords.

recorded it in the third argument passed to it instead, then line 1 would have been

function-name: add ARG 3. The file also tells ParTeCL that the program takes

two command line inputs, a and b, each an integer. They have command line indices

1 and 2 respectively, corresponding to argv[1] and argv[2] in the original C code.

Finally, the configuration file tells ParTeCL that there is a single result to be stored in a

variable called c, which is an integer. The add.c program does not take inputs through

stdin, so the stdin keyword is not used.

4.2.2 Outputs

In addition to the OpenCL kernel, ParTeCL generates a part of the CPU runtime.

ParTeCL’s outputs are presented in this section, while the rest of the CPU runtime
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is presented Section 4.3.

In particular, ParTeCL generates three distinct outputs:

• Data structures used to transfer data between CPU and GPU memory

• CPU code to assign test case values to the input data structures

• Kernel code, which executes the tested program on the GPU

Data Structures - structs.h

In order for the GPU to execute test cases, the CPU code transfers them to the GPU

memory, where the kernel code uses them as inputs. Each GPU thread reads and

executes a different test case. Similarly, once the tests are executed, the results are

transferred back to the CPU memory, where the CPU code can check if they are correct.

To store the values for the transfers, data structures generated by ParTeCL are used.

The tool uses the configuration file, described in Section 4.2.1, to generate the struc-

tures and write them in file structs.h. There are always two data structures - input and

result. Each of them contains the variables described in the configuration file, as well

as a variable test case num to record the test case id. input also contains the variable

argc, which corresponds to the number of command line input variables.

Thus, for the add.c program, the structs file looks like this:

1 typedef struct input{

2 int test_case_num;

3 int argc;

4 int a;

5 int b;

6 } input;

7

8 typedef struct result{

9 int test_case_num;

10 int c;

11 } result;

CPU Runtime Code - cpu-gen.c

ParTeCL generates a single function for the CPU runtime, which, given values for the
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test case inputs, assigns them to the variables in the input structure. As the input
structure is auto-generated by ParTeCL, so is the function which assigns values to it.

For the add.c program, cpu-gen.c contains the following:

1 void populate_inputs(

2 struct input *input ,

3 int argc , char** args ,

4 char* stdins)

5 {

6 (*input).test_case_num = atoi(args[0]);

7 (*input).argc = argc;

8 if(argc >= 2)

9 (*input).a = atoi(args[1]);

10 if(argc >= 3)

11 (*input).b = atoi(args[2]);

12 }

This function is called by the generic CPU code, described in Section 4.3. Before

calling it, the CPU reads the test case values from the CSV file, supplied by the user,

and then passes them to the function as the argument char** args. The function also

takes argument char* stdins which is used when testing programs which take inputs

through standard input. add.c does not use standard input, so in this example stdins

is not used and it would be NULL at runtime.

Kernel Code - test.cl

The kernel code is generated from the unmodified source code of the tested C program.

The tool turns the C source into OpenCL code, by turning the main function into an

OpenCL kernel function. It also modifies the way inputs are being read, by replac-

ing references to argv and standard input with references to the auto-generated input
structure.

To illustrate this, consider the resulting OpenCL code for add.c:

1 int add(int a, int b){

2 return a + b;

3 }

4

5 __kernel void main_kernel(

6 __global struct input* inputs ,
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7 __global struct result* results)

8 {

9 int idx = get_global_id(0);

10 struct input input = inputs[idx];

11 int argc = input.argc;

12 results[idx].test_case_num = input.test_case_num;

13

14 if(argc <= 2){

15 printf("Please , provide two integers.\n");

16 return 0;

17 }

18

19 int a = input.a;

20 int b = input.b;

21 /*printf("%d + %d = %d\n", a, b, add(a, b));*/

22 results[idx].c = add(a, b);

23 }

The tool has made the following modifications to the original C code:

• Lines 5, 6 and 7: the main function is turned into an OpenCL kernel function,

via the kernel attribute. It is renamed to main kernel. The arguments, argv

and argc are also changed. They are replaced by two arrays

– global struct input* inputs: an array of input structures, generated by

the tool; it contains the program’s test cases and is populated and trans-

ferred to the GPU’s global memory by the CPU code.

– global struct input* inputs: an array of result structures, generated by

the tool; the GPU threads write the results of the tested function to it and

the CPU then transfers them to its own memory.

• Lines 9, 10, 11 and 12: these lines are always inserted in the beginning of the

kernel function. They determine, respectively:

– int idx: the thread index of the current GPU thread; it determines which

elements of inputs and results correspond to the current thread’s test case.

– struct input input: the element of inputs which has the current thread’s

test case inputs.

– int argc: the number of inputs in the current test case.
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– the test case id of the current thread’s test case; it is recorded in the corre-

sponding element of results.

• Lines 19 and 20: the references to argv in the original source code are replaced

with reads from the input structure.

• Line 21: the tool comments out any prints to standard output, as, generally, they

are not required for testing.

• Line 22: the result from the tested function add, as specified in the configuration

file, is assigned to a variable in the result structure corresponding to the current

test case; ParTeCL scans the original code for function calls to the tested function

and replaces them with the line which assigns their results to the result structure.

This simple example demonstrates the general code changes which ParTeCL performs

to the original C source code in order to turn it into OpenCL kernel code. What is

important to note is that the changes affect only the way in which the program handles

inputs and outputs. The original functionality remains unchanged in order to ensure

that it is the one being tested.

For less trivial applications, ParTeCL performs additional code transformations. They

are discussed in Section 4.4.

4.3 CPU Runtime

The CPU runtime defines the behaviour of the CPU, which builds the tested program

for execution on the GPU and launches its test cases on the GPU threads. It consists

mostly of generic code which is always the same, irrespective of which program is

being tested. The only exception is the CPU function which assigns test case values to

the inputs structures, described earlier in Section 4.2.2.

The current section presents the tasks performed by the CPU runtime. It also describes

the CSV format defined for the file, which contains the values for the test cases. This

file is an input to the CPU runtime.
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4.3.1 Generic CPU Code

The CPU runtime performs mostly general tasks which facilitate execution on the

GPU, as well as some tasks with particular significance to testing. The latter are in-

cluded in bald in the list below and discussed in more detail after it.

In particular, the code performs the following tasks:

1. Allocate memory for the input and result structures on the CPU and the GPU.

2. Declare the OpenCL command queue and create the OpenCL context.

3. Build the auto-generated OpenCL kernel code.

4. Read the values for the test case inputs from the test case file.

5. Populate the input structures with test case values.

6. Transfer the inputs to the GPU memory.

7. Calculate dimensions for the GPU threads.

8. Launch the kernel code on the GPU and wait for the execution to finish.

9. Transfer the results to the CPU memory.

10. Compare the results to expected results.

Read the values for the test case inputs from the test case file. The user supplies

the test case values in a pre-defined CSV format, presented in Section 4.3.2. While

this file will have a different number and type of tests for different programs, the CPU

code that reads it remains the same, due to the general nature of the CSV format.

Populate the input structures with test case values. As the CPU code reads test

cases from the CSV file, it assigns their values to the input structure, declared in task

1. To do this, it calls the auto-generated CPU runtime function, described in Section

4.2.2.

Calculate dimensions for the GPU threads. As mentioned in Chapter 2, the work-

group dimensions chosen for any OpenCL program can have significant effect on the
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achieved performance. For this project, only a naive approach to calculating the di-

mensions is implemented. The test cases are split equally across a single dimension of

the work-group. Future research will be carried out to identify more optimal strategies.

Compare the results to expected results. Currently, the CPU runtime compares

the testing results returned by the GPU threads to those from the CPU. This is used to

confirm that the GPU provides the same testing results as the CPU.

The CPU runtime is implemented in standard C, using the OpenCL API.

4.3.2 Test Cases

The values for the test cases are supplied by the user and read by the CPU runtime.

They need to be in CSV format, in which:

• Each row corresponds to a test case.

• The first column contains the id of the test case. The subsequent columns contain

the input variables, in the order in which they are read from the command line

by the tested program.

• If the program uses standard input (stdin), these inputs are saved in separate

text files for each test case, separated by a new line character. In the CSV file,

the name of the file containing the stdin inputs is recorded, preceded by the ’<’

character. This informs the CPU code, that a file is being piped, similarly to the

way it is done in bash scripting.

For the add.c example, a test case file looks like this:

1 1 1 2

2 2 2 2

3 3 3 2

4 4 4 2

5 5 5 2

This file contains 5 test cases. The first column shows the test case id, from 1 to 5. The

second column contains values for test input a and the third column contains values

for the test input b.
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Suppose add.c didn’t take a and b through the command line, but through standard

input instead. Then, for each test case, the values would be kept in a separate text file,

say test {test num}.inp, on a new line each. The CSV file would look like this:

1 1 < test_1.inp

2 2 < test_2.inp

3 3 < test_3.inp

4 4 < test_4.inp

5 5 < test_5.inp

The CSV format assumed for the test cases was chosen for a few reasons.

• It is general and likely to fit many testing scenarios.

• It is straightforward to parse.

• It is widely used and likely to be familiar to many potential users.

4.4 C Features

As discussed in Chapter 2, not all C features are readily compiled for execution on

the GPU. For some of these which are not, code transformations are possible. Table

4.2 groups C features in three groups: features which run on the GPU readily out of

the box, features which are currently being automatically transformed by ParTeCL and

features which currently aren’t supported. Applications which have the latter would

fail to build for execution on the GPU. Furthermore, the section describes the code

transformations performed by ParTeCL and discusses the features which are currently

unsupported.

4.4.1 Code Transformations

The current section describes the code transformations for some of the features in

Table 4.2, namely global scope variables, standard library calls and standard input

and input. The transformations for command line arguments are shown in Section

4.2.2.
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Out of the box
• simple data types, structs, vectors

• pure functions, function calls, double precision (for

OpenCL 1.2)

With transformations

• command line arguments

• standard in/out

• global scope variables

• standard library calls (partial support)

Unsupported
• recursion

• dynamic memory allocation

• file I/O

Table 4.2: C features handled by ParTeCL.

Global Scope Variables

OpenCL does not support assignment to global scope variables. Thus, if a C program

uses them, they need to be moved to local scope in order for it to be tested on the GPU.

ParTeCL does this is by moving the declaration of these variables to the kernel main

function and then passing a pointer to them as argument to the functions which use

them. Thus, the variables are no longer in the program’s global scope. By using

pointers to them, the tool ensures that any changes made to their values would be

visible within the scopes of all functions which use them.

Consider the add.c example. Suppose that instead of declaring the variable b inside

the main function, the programmer had decided to make it a global scope variable,

accessible by all methods, like in the code below.

1 int b;

2

3 int add(int a){

4 return a + b;

5 }

6

7 int main(int argc , char* argv[]){

8 if(argc <= 2){

9 printf("Please , provide two integers.\n");

10 return 0;

11 }

12

13 int a = atoi(argv[1]);
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14 b = atoi(argv[2]);

15 printf("%d + %d = %d\n", a, b, add(a));

16 }

In order to port the above program to compilable OpenCL code, the tool performs the

following transformations to the global scope variable b.

1 /*int b;*/

2

3 int add(int a, int* b){

4 return a + *b;

5 }

6

7 __kernel void main_kernel(

8 __global struct input* inputs ,

9 __global struct result* results)

10 {

11 int idx = get_global_id(0);

12 struct input input = inputs[idx];

13 int argc = input.argc;

14 results[idx].test_case_num = input.test_case_num;

15

16 int b;

17

18 if(argc <= 2){

19 printf("Please , provide two integers.\n");

20 return 0;

21 }

22

23 int a = input.a;

24 b = input.b;

25 /*printf("%d + %d = %d\n", a, b, add(a));*/

26 results[idx].c = add(a, &b);

27 }

• The declaration of b is moved inside main kernel (line 16).

• An argument int* b is added to function add (line 3).

• The reference to b inside add is replaced with dereferencing of the pointer argu-

ment int* b (line 4).

• The address of b is passed as an argument to the function call of add (line 26).
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These automatic transformations make it possible for the program to be built in OpenCL

without changing its behaviour.

Standard Library Calls

Generally, the OpenCL compiler is not be able to use system files for the C Standard

Library. Thus, custom OpenCL implementation of the Standard Library is required for

applications which make calls to its functions.

While there are no OpenCL implementations for all of the Standard Library, devel-

oping them from scratch is possible. An example of a specific Standard Library im-

plementation, targeting embedded systems, is uClibc [5]. Similarly, in the current

project, a small subset of Standard Library functions were implemented in OpenCL.

These were functions found in the evaluation benchmarks, described in Chapter 5. In

particular, the functions implemented were:

• int atoi(const char *str)

• char* fgets(char *s, int maxsize, char* input, int* idxptr)

Here the argument FILE *stream is replaced by two arguments, namely char*

input and int* idxptr. In other words, a file stream is replaced by a C string

and a pointer to its elements. This is necessary as OpenCL cannot work with file

strams.

• functions in ctype.h

As a supporting part of this project, OpenCL implementations of other standard library

functions will be added, as the need for them arises. This sub-project is named clClibc
and it will be open sourced, in order to allow external contributions and feedback.

Standard Input and Output

The transformations necessary for handling standard input and output on the GPU are

briefly described in Section 4.2. Here, they are described in more detail - standard

input first and standard output second.

In short, a value for every input to the tested program needs to be supplied as part of the

test case. When the program takes them through standard input (stdin), the reference

to it is replaced with a reference to the input structure.
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Once more, consider the add.c example. Suppose that the inputs a and b were not

command line arguments, but read through stdin instead, as in the code below:

1 int add(int a, int b){

2 return a + b;

3 }

4

5 int main(int argc , char* argv[]){

6 char a_str[10];

7 fgets(a_str , 10, stdin);

8 int a = atoi(a_str);

9

10 char b_str[10];

11 fgets(b_str , 10, stdin);

12 int b = atoi(b_str);

13

14 printf("%d + %d = %d\n", a, b, add(a, b));

15 }

The program uses fgets and stdin in lines 7 and 11. ParTeCL replaces them with

lines 19 and 23 in the code below. In particular, fgets now references the clClibc
implementation, described in the previous paragraph and stdin is replaced with a

reference to the input structure.

1 int add(int a, int b){

2 return a + b;

3 }

4

5 __kernel void main_kernel(

6 __global struct input * inputs ,

7 __global struct result * results){

8

9 int idx = get_global_id(0);

10 struct input input = inputs[idx];

11 __global struct result *result_gen = &results[idx];

12 int argc = input.argc;

13 (*result).test_case_num = input_gen.test_case_num;

14

15 int stdin_count_gen;

16 stdin_count_gen = 0;

17

18 char a_str[10];
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19 fgets(a_str , 10, input.stdin1 , &stdin_count_gen);

20 int a = atoi(a_str);

21

22 char b_str[10];

23 fgets(b_str , 10, input.stdin1 , &stdin_count_gen);

24 int b = atoi(b_str);

25

26 /*printf("%d + %d = %d\n", a, b, add(a, b));*/

27 (*result).result = add(a, b);

28 }

The variable stdin count gen, declared on line 15, is added by ParTeCL and is used

by fgets to record to which character of input.stdin1 it has read. fgets stops

at the new line character. The next call to it will start reading from there. In this

way, subsequent calls to fgets will read from subsequent lines in input.stdin1,

replicating the behaviour of stdin. This is why, as discussed in Section 4.3, the user

is required to enter the values for the stdin inputs on a new line in the test case input

files. In this case, those will be test values for a and b.

For standard output, ParTeCL comments out calls to functions that output to it (for

example printf), as they are usually a supporting functionality.

Exception is made when the user wants to test what values are output through standard

output. If this is the case, the user needs to enter the name of the standard output

function in the configuration file, just as if they were interested in testing the output of

any other function. ParTeCL then handles it in a standard way.

4.4.2 Unsupported Features

Table 4.2 displays C features which are not supported for compilation by the OpenCL

compiler and which are currently not handled by the tool. This section discusses them

in greater detail together with possible solutions.

Recursion

A major limitation of GPU hardware is the lack of support of recursion. However, any

recursive function can be rewritten as a non-recursive function [23]. Thus, if the tested



36 Chapter 4. Design & Implementation

program contains recursive calls, they could be removed without changing functional-

ity.

To demonstrate this in practice, one of the benchmark programs, used in Chapter 5,

is considered. This is the replace program, which is part of the SIR repository [9].

Replace contains a single recursive function, called amatch, which is manually turned

into a non-recursive function in order to execute it on the GPU. For brevity, the detailed

description of the function and its transformation are omitted from this chapter and

included in Appendix A instead.

amatch it is a complex recursive function, with a recursive call contained within two

nested while loops and an if statement. Via analysis of the control flow of this func-

tion, it was manually transformed into a non-recursive one with the use of a stack.

To confirm that this modification does not alter replace’s functionality, its test cases

were executed on the CPU and their results were compared to those obtained with the

original recursive implementation.

ParTeCL does not offer automatic code transformation to remove recursive functions,

since, as demonstrated by the replace example, this is not a trivial task for general

functions. However, as seen in this example, when necessary, it is possible to perform

the transformation manually, even for non-trivial functions.

Dynamic Memory Allocation

Currently, dynamic memory allocation is not possible on the GPU and the OpenCL

compiler throws an error if it encounters it. The GPU can allocate memory only stati-

cally. Dynamic memory allocation of the GPU memory can be performed only by the

CPU runtime.

Therefore, transformations to eliminate dynamic memory allocation would be only

possible for data structures which are either test inputs or test results. Such transfor-

mations would not be trial.

For this reason, ParTeCL currently targets applications which do not use dynamic

memory allocation. This may change in the future, with the advance of GPU architec-

tures and tools, as well as in future work aimed at extending the scope of this project’s

approach.
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File I/O

File I/O, similar to other system calls, is not possible on the GPU. Special OS abstrac-

tions are needed to allow the GPU to access the file system, which can have significant

performance penalties [27].

For the purposes of testing, the tested program’s kernel can be partitioned, so that file

I/O is performed by the CPU and overlapped with kernel execution where possible.

This will be examined and implemented in future work.

4.5 Implementation

ParTeCL was implemented in C++14, using the Clang LibTooling library [3], pre-

sented briefly in Section 2.3. The current section describes the implementation, start-

ing from the system structure, continuing with the components performing the source

code transformations and finishing with a discussion of the reasons behind the imple-

mentation decisions and the process involved in ensuring ParTeCL’s correctness.

The implementation is based on ParTeCL’s outputs and on the code transformations it

performs, seen earlier in Sections 4.2.2 and 4.4 respectively.

4.5.1 System Structure

ParTeCL’s implementation has a very straightforward system structure. It consists of

two components:

• The Main Class.
Entry point to the system, it performs two functions:

– Read the configuration file and generate the Data Structures (struct.h) and

a part of CPU Runtime Code (cpu-gen.c).

– Launch the Kernel Generator and pass to it parameters from the configura-

tion file.

• The Kernel Generator.
Generates the OpenCL kernel code from the original C code.
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The Main Class performs a straightforward translation of the configuration file into the

two outputs - structs.h and cpu-gen.c.

The Kernel Generator performs the code transformations which translate the original

C program into valid OpenCL kernel code. The Kernel Generator uses LibTooling’s

AST Matchers to find portions of the original program which it needs to transform.

It then uses the Rewriter class inside the corresponding AST Handlers to perform the

transformations at source code level. The particular AST Matchers and AST Handlers

currently implemented in ParTeCL are described in the next section.

4.5.2 AST Matchers & Handlers

In LibTooling, each AST Matcher is usually implemented together with a correspond-

ing AST Handler, which implements the desired actions to be taken for the matched

AST nodes. ParTeCL uses AST Handlers to save necessary intermediate information

between matchers and to perform the code transformations.

Each of the matchers implemented in ParTeCL is described below, together with the

actions implemented in its handler. The matchers are grouped based on the code trans-

formations they perform, as described in Section 4.4, or on their supporting functions.

Command line arguments

• argvInAtoiMatcher

Used for programs, which take integers as command line arguments, it finds

references of the type atoi(argv[i]), and replaces them with references to the

corresponding variable inside the input structure.

For example, int a = atoi(argv[1]) becomes int a = input.a.

• argvMatcher

Same as argvInAtoiMatcher, but used in programs, in which the reference to

argv is not inside a call to atoi.

Standard output

• commentOutMatcher

Finds calls to functions which perform standard output and comments them out.
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Can be extended to comment out calls to other functions too.

Build ’function call to caller map’

• calleeToCallerMatcher

Builds a map between function calls and the function inside which they are

called. It is used in handlers, which add either new parameters to function decla-

rations or, correspondingly, new arguments to function calls. For example, when

a global variable is being turned into a local variable, its declaration is moved

to the main method and then added as a parameter to the functions which use

it, e.g. foo. foo may not be called directly by main though. There may be a

function bar which calls foo, which in turn is called by main. Thus, the call to

caller map will be:

foo ->bar

bar ->main

Thus, the global variable will need to be added as a parameter to bar as well, and

then passed as an argument to all function calls of bar. The ’call to caller map’

allows the matchers, which deal with new function parameters and arguments,

to recursively handle such scenarios of arbitrary depth.

Standard input

• stdinMatcher

Finds references to stdin and replaces them with references to the input struc-

ture. Creates a list of functions, which make a reference to stdin.

• stdinAsParamsMatcher

Adds the counter, which keeps track of how much of stdin has been read, as

a parameter to the function declarations, which use it. Uses the ’call to caller

map’. An exmaple of this counter is found in Section 4.4 under Standard Input
and Output.

• stdinAsArgsMatcher

Adds the counter from stdinAsParamsMatcher as an argument to the function

calls of the functions, which now have it as a parameter.

Global scope variables
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• globalVarMatcher

Finds the program’s global variables and comments out their declarations.

• globalVarUseMatcher

Finds the functions which use global variables and changes their references to

the global variable to the dereferencing of a pointer to it (if the global variable is

not already a pointer). An example of this can be found in Section 4.2.2 under

Kernel Code - test.cl.

• globalVarsAsParamsMatcher

Adds the global variables as parameters to the function declarations, which need

them. Uses the ’call to caller map’.

• globalVarsAsArgsMatcher

Adds the global variables as arguments to the function calls of the functions,

which now have them as parameters.

Input and Result structures inside functions

• inputsMatcher

Finds functions, which require a reference to the input structure. Those are

functions, which reference stdin.

• resultsMatcher

Finds functions, which require a reference to the result structure. Those are

functions which make a call to the tested function, as specified in the configura-

tion file.

• inputsAndResultsAsParamsMatcher

Adds the input and result structures as parameters to the function declarations,

which need them. Uses the ’call to caller map’.

• inputsAndResultsAsArgsMatcher

Adds the input and result structures as arguments to the function calls of the

functions, which now have them as parameters.

Write the result into the result structure

• functionToTestMatcher



4.5. Implementation 41

Finds function calls to the tested function, as specified in the configuration file.

Replaces those function calls with calls, which write the result in the result
structure.

Transformations in main

• mainMatcher

Performs the following transformations in main:

– Changes the signature and the name to turn it into an OpenCL kernel func-

tion.

– Adds the generic code in the beginning of main, as described in Section

4.2.2 under Kernel Code - test.cl.

– Adds declarations for the global scope variables.

– Adds declarations for the necessary string counters.

• returnInMainMatcher

If the main function returns a value, comments the return statement out, since

OpenCL kernels do not return values.

Strandard library calls

• includesMatcher

Finds calls to standard library functions. If the function is implemented in

clClibc, it adds an #include for the respective header file.

4.5.3 Discussion

Using Clang LibTooling

The use of Clang’s LibTooling was chosen for ParTeCL’s implementation, as the AST

Matchers it provides fit with the objective to perform transformations on specific parts

of the source code. This meant that most of the work went into deciding what the

transformations needed to be and not into implementation effort.

In addition, the AST Matchers and Handlers are implemented in their own classes,

which keeps the code decoupled and easy to maintain and extend for additional code
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transformations.

Testing

To ensure that ParTeCL performed the intended code transformations correctly, small

example programs were used, similar to the add.c example used in this chapter. For

each code transformation, a small program containing only the relevant feature would

be developed and run through ParTeCL to check that the transformation was as in-

tended. These programs are kept as a set of tests.

4.6 Summary

The current chapter presented the process of testing on the GPU threads, as well as

the design and implementation of the two systems which automate it, namely ParTeCL

and the CPU runtime. Testing on the GPU involves:

• generation of an OpenCL kernel, which executes the tested program on the GPU

threads. This step is automated by ParTeCL.

• execution of the CPU runtime, which launches the tests in parallel on the GPU

threads. In particular, it reads the values for the test cases, transfers them to

GPU memory, builds and launches the OpenCL kernel on the GPU threads and

transfers the results back to CPU memory for verification. The CPU runtime

requires the values for the test cases to be supplied in a particular CSV format,

also presented in this chapter.

ParTeCL

This chapter presented ParTeCL by describing its inputs and outputs. It has two inputs:

the unmodified source code of the tested program and a configuration file, written by

the user. It generates three outputs: the OpenCL kernel, data structures to transfer

data between the CPU and GPU memories and a CPU runtime function which assigns

values to the auto-generated data structures.

In addition, the chapter described the code changes performed by ParTeCL in detail

and discussed particular C features, which pose a challenge to the OpenCL compiler
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and are handled via specific transformations. Transformations alter the input/output

interface of the program, but not its functionality.

Finally, the chapter described ParTeCL’s implementation in the C++14 programming

language, which uses the AST Matchers available in the Clang LibTooling library [3].

The CPU runtime

The CPU runtime consists of mostly generic CPU code, which remains the same, irre-

spective of which C program is being tested. The current chapter presented the func-

tionalities performed by the CPU runtime, as well as the CSV format for the test case

values, used by the CPU runtime. The CSV format was chosen for being general, easy

to parse and already widely adopted.
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Evaluation

The Master’s project has three goals, identified in Chapter 1. To clarify them and to

evaluate the extend to which they are met, four evaluation questions are identified.

They are presented in the beginning of the current chapter and used to evaluate the

results achieved in this project. In addition, the evaluation uses benchmark applica-

tions from two software repositories. They are presented in Section 5.2. Finally, the

evaluation results are presented in Section 5.3.

5.1 Evaluation Questions & Setup

To evaluate the extend to which the project meets its goals, the current chapter answers

the following evaluation questions:

Q1. Valid OpenCL code.
Does ParTeCL produce valid OpenCL code, which can be built and ran on the

GPU without manual modifications?

Q2. Correct Testing Results.
Do ParTeCL’s output kernels produce the same testing results as the tests ran on

the CPU?

Q3. Usability.
Does ParTeCL eliminate the need of OpenCL knowledge? Can it be used by

general software developers?

45
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Q4. Speed-up and Optimisations.
What speed-up is achieved by ParTeCL’s output kernels? What future optimisa-

tions should be researched?

To answer question Q1, four benchmark applications, containing different C features,

were compiled with ParTeCL. The resulting OpenCL kernels were built by the CPU

runtime and executed on an Nvidia Tesla K40m GPU. The benchmarks are from the

SIR [9] and EEMBC [6] repositories and are described in detail in Section 5.2.

To answer question Q2, the testing results obtained for each benchmark when ran on

the GPU were compared to those obtained when executed on the CPU. The OpenCL

API contains profiling functions, which are used to measure execution times on the

GPU. Execution time on the CPU is measured, suing the standard C function gettimeofday.

Executions were performed 1000 times and the median value is reported.

To answer question Q4, execution time for two different benchmarks was measured

and compared to execution time on the CPU. This performance data was analysed and

used to identify further steps for the optimisation of the achieved performance.

To answer question Q3, usability testing was performed with six programmers. For this

purpose, a simple benchmark application was written, which takes inputs both through

command line and standard input. The programmers were asked to write tests for it,

generate an OpenCL kernel using ParTeCL and use the CPU runtime to execute the

tests on the GPU. Their actions were observed and any problems and questions they

had were noted down. Finally, they were asked to rate the ease of use of the different

steps involved in the testing process. The benchmark program, as well as a full list of

the actions and questions, can be found in Appendix B.

Hardware

The benchmark applications were executed on an Nvidia Tesla K40m GPU. The GPU

has 15 compute units with a maximum work-group size of 1024 work-group items.

The final results for all evaluation questions are presented in Section 5.3.
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5.2 Benchmarks

Benchmark programs with existing test suites were chosen for evaluation. They are all

written in the C programming language and found in two separate benchmark repos-

itories, namely SIR [9] and EEMBC [6]. SIR contains benchmarks programs aimed

at software testing research, together with test suites for them. EEMBC [6] contains

embedded systems benchmarks from a variety of industry domains, including mobile

devices, automotive and telecom.

SIR benchmarks were chosen for the large test suites with which they are supplied,

making them suitable for performance evaluation, while EEMBC benchmarks are rep-

resentative of the types of applications which testing on the GPU could target.

Details of the particular programs are presented in this section and summarised in Table

5.1.

5.2.1 SIR: tcas

• Size: 173 LOC, 9 functions

• Different test cases: 1608

tcas is an aircraft collision avoidance system, developed at Siemens Corporate Re-

search for the study presented in [16].

It takes 13 integer inputs through the command line and outputs a single integer. The

program implements 8 functions in addition to main and uses global scope variables.

5.2.2 SIR: replace

• Size: 564 LOC, 21 functions

• Different test cases: 5542

replace performs pattern matching and substitution in strings. It is developed for the

same study as tcas [16].

replace takes two string inputs through command line and multiple strings through

standard input. It matches occurrences of the first string in the stdin inputs and replaces



48 Chapter 5. Evaluation

them with the second string. It outputs the result, character by character, in standard

output.

replace’s implementation has a number of interesting aspects, different to tcas:

• It performs string manipulation.

• It contains loops and a high degree of control-flow divergence, determined by

the size of the test case inputs, i.e. the length of the input strings. This has

implications for the achieved performance.

• It contains a recursive function.

• It takes inputs through standard input.

• The testing result is not performed by a function call, but output in standard

output.

5.2.3 EEMBC: autcor00

• Size: ∼35 LOC, 1 function

• Different test cases: 3

autcor00 is a small system from the TeleBench benchmark suite in EEMBC, contain-

ing telecom applications. It is a mathematical algorithm for signal processing, which

computes a cross-correlation of a signal with itself.

autcor00’s implementation has the following interesting aspects:

• Custom data types; autcor00 defines its own data types in a separate header

file, by renaming signed short to e f32 and signed int to e s32. This is

important as it demonstrates that testing on the GPU handles custom data types,

as long as the definitions are available to the OpenCL compiler, similar to the

CPU.

• Results are written into an argument of the tested function.

Since EEMBC is not a testing repository, autcor00 is supplied with only 3 test cases.

This is sufficient to evaluate the correctness of the OpenCL kernel which ParTeCL

outputs (Q1 and Q2), but not enough to be used in performance evaluation (Q4).
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5.2.4 EEMBC: viterb00

• Size: ∼193 LOC, 6 functions

• Different test cases: 4

viterb00 is another program from the TeleBench suite in EEMBC. It is a decoder for

encoded streams in embedded IS-136 channel coding applications.

Its implementation is very similar to that of autcor00, making use of the same custom

data types, but viterb00 is a larger program, which also uses global scope variables

and custom structures.

Similar to autcor00, viterb00 has only a small number of test cases and is not used in

the performance evaluation (Q4). It is used in the evaluation of questions Q1 and Q2.

Benchmark Test cases Interesting features Data types

SIR: tcas 1608
• global scope vari-

ables
int

SIR: replace 5542

• string manipulation

string

• standard input

• recursion

• results in standard

output

EEMBC: autcor00 3

• custom data types typedef signed

short

• result as an argument

to the tested function

typedef signed

int

EEMBC: viterb00 4

• custom data struc-

tures
typedef struct

• global scope vari-

ables

Table 5.1: Benchmark summary.



50 Chapter 5. Evaluation

5.3 Results

5.3.1 Q1. Valid OpenCL Code

ParTeCL successfully produces valid OpenCL kernels for the benchmark programs,

shown in Section 5.2. In other words, without the need of manual editing, the kernels

produced by ParTeCL can be built by the CPU runtime and launched on the GPU

threads.

The benchmark programs use different C features, presented in Table 5.1, demonstrat-

ing that ParTeCL can produce valid OpenCL code for a range of C applications.

5.3.2 Q2. Correct Testing Results

For all test cases of the benchmarks, the testing results produced when executing

ParTeCL’s OpenCL kernels on the GPU were compared to those produced by the CPU.

In all cases, GPU testing produced the exact same results, confirming empirically the

correctness of testing on the GPU.

What is more, the benchmarks use different data types, as seen in Table 5.1, which

demonstrates that the GPU outputs correct testing results irrespective of the data types

used by the tested application.

5.3.3 Q3. Usability

One of ParTeCL’s goals is to make testing on the GPU available to general program-

mers, by eliminating the need to manually write OpenCL code. To evaluate the extend

to which this goal is achieved, usability testing was performed with six users, unfa-

miliar with the project. As seen in Section 5.1, they were asked to perform all steps

involved in testing on the GPU, using ParTeCL, and then rate the different aspects of

it in terms of ease of use. The average ratings are presented in Table 5.2.

The ratings show that overall, once users were familiar with the formats defined for the

test cases and configuration file, they found the testing process clear and straightfor-

ward to follow, demonstrating that ParTeCL successfully abstracts away the GPU
programming details.
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Step in the testing process Rating

Writing test cases in the CSV format 4.00

Writing the configuration file 3.41

Running ParTeCL 4.83

Building the CPU runtime 4.85

Running the test cases 4.33

Overall process 3.91

Table 5.2: Ease of use ratings. The scale is from 1 to 5, where 1 is not at all easy and

5 is very easy.

In addition, the usability testing highlighted some areas of improvement, which will

be considered and included in future work. This was expected, as the systems are not

a fully developed yet.

• Test cases in CSV format:

– Extend the format to accommodate complex data structures.

• Configuration file:

– Auto-generate names for the inputs and result, instead of expecting them

from the user.

• Overall process:

– Merge the test cases and the configuration file in one.

– Provide a single front-end for both systems: code generation and test exe-

cution.

5.3.4 Q4. Speed-up and Optimisations

The two SIR benchmarks, tcas and replace, are used to asses the performance achieved

by executing test cases in parallel on the GPU, using ParTeCL and the CPU runtime.

The following performance data is gathered:

• Time to transfer test cases to the GPU memory (transfer inputs).

• Time to execute the kernels on the GPU (kernel execution).
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• Time to transfer results back to the CPU memory (transfer results).

• Time to execute all tests on the CPU (CPU time).

In order to simulate larger test suites, test cases are read in a loop by the CPU runtime.

For example, if 1000 test cases are available, but 1500 are needed, all 1000 test cases

are read once and then the first 500 are read again.

SIR: tcas

Figure 5.1 displays the CPU and GPU execution times for tcas, when running different

numbers of test cases. The following is observed:

• Overall execution time on the GPU is consistently much lower than execution

time on the CPU, even for small numbers of test cases.

• Kernel execution time and the time to transfer inputs both contribute significantly

to the execution time on the GPU.

• As the number of test cases grows, the time to transfer inputs increases faster

the kernel execution time. In fact, the kernel execution time remains almost

constant for up to 8192 test cases, as there are still parallel resources available

on the GPU. The time to transfer inputs grows linearly.

Figure 5.1: Execution times of the tcas benchmark on the GPU and the CPU for test

suites of different sizes.
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The last observation has implications for the speed-up achieved in comparison to ex-

ecution on the CPU. Figure 5.2 displays the speed-ups when kernel execution time is

considered both alone and together with the time for data transfers. While the speed-

up of the overall GPU execution (kernel + data transfers) is considerable at up to 90x,

this is almost 10 times smaller than the speed-up achieved when data transfers are not

considered. This demonstrates that optimising for data transfers could be extremely

beneficial in terms of performance.

Figure 5.2: Speed-up for the tcas benchmark, when compared to execution on a single

CPU, on test suites of different sizes.

These performance results are promising and as expected, as tcas is a simple applica-

tion, with only a small degree of control-flow divergence, which uses little memory.

Thus, it is an ideal candidate for testing on the GPU.

SIR: replace

In contrast, replace contains many nested loops, whose number of iterations depend

on the lengths of the input strings. This constitutes a large degree of control-flow

divergence, which would have a detrimental impact on the performance. In addition,

the test cases of replace are much larger. In cases when not all of them fit in the thread’s

local memory, the GPU would need to store them in its global memory, forcing the

threads to perform expensive reads from it.

Both of these factors are possible explanations for the long kernel execution times,

seen in Figure 5.3. For test suites of up to 2048 test cases, the kernel execution time
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Figure 5.3: Execution times of the replace benchmark on the GPU and the CPU for

test suites of different sizes.

Figure 5.4: Speed-ups for the replace benchmark, when compared to execution on a

single CPU, on test suites of different sizes.

alone is longer than the CPU execution time, meaning that the GPU is in fact slower.

As both figures 5.3 and 5.4 show, this effect diminishes as more test cases are executed,

leading to a speed-up of over 4x for test suites of 131072 test cases when only kernel

execution time is considered. Similarly to what was observed for tcas, the speed-up is

significantly smaller when both kernel execution and data transfer times are taken into

account, effectively removing any benefit of using the GPU. Thus, replace shows that
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in addition to optimisations for data transfers, optimisations minimising the effect of

control-flow divergence and large data inputs, not fitting into local memory, should be

researched.

Performance optimisations will be the focus of future PhD work. This is discussed in

6.3.

5.4 Summary

To assess the extend to which the current project meets its goals, this chapter used four

evaluation benchmarks from the SIR [9] and EEMBC [6] benchmark suites. The test

cases of the four benchmarks were executed on the GPU, using ParTeCL and the CPU

runtime, demonstrating the following results:

• ParTeCL generates valid OpenCL code, which can be successfully built and ex-

ecuted on the GPU without manual modifications.

• The OpenCL kernels generated by ParTeCL, when executed on the GPU, output

the same testing results as the CPU.

Performance results were collected for the benchmarks from SIR, revealing the fol-

lowing:

• High speed-ups (up to 90x in this example) can be easily achieved for applica-

tions with a low degree of control-flow divergence.

• Data transfers between the CPU and the GPU take a significant portion of the

execution time and have a huge detrimental impact to the achieved speed-ups.

• Performance for applications with a high degree of control-flow divergence and

large data inputs is limited and optimisation methods should be researched in

future work.

Finally, a usability study was performed with six programmers, which confirmed that

ParTeCL and the CPU runtime successfully hide the OpenCL layer of implementa-

tion and allow programmers to execute test cases on the GPU easily and transparently.

Additionally, user feedback was gathered during the study to be used for future im-

provements to the process.
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Conclusions

This Master’s project focussed on the challenges encountered in using GPUs to accel-

erate functional software testing. Its goal was to demonstrate that automation of test

launching can successfully abstract away low-level programming model details, mak-

ing it more accessible to general programmers, who do not have GPU knowledge. The

project also aimed to empirically demonstrate that automatically generated code can

be successfully built and executed on the GPU, and that tests ran on the GPU threads

produce the same testing results as when executed on the CPU.

For this purpose, two systems were developed - ParTeCL, which automatically gen-

erates OpenCL kernels for the tested program, and a CPU runtime, which reads the

test cases and launches them on the GPU threads, using the auto-generated OpenCL

kernels. ParTeCL was implemented in C++14, using the Clang LibTooling library and

the CPU runtime was implemented in standard C. Four C benchmarks from two repos-

itories were used for the evaluation of the systems. A usability study was carried out to

determine their ability to enable general programmers to execute tests on the GPU. Fi-

nally, preliminary performance data was gathered and analysed in order to investigate

potential performance and identify future areas for optimisation.

This chapter summarises the design and implementation of the developed systems and

the evaluation results presented in this project. It also discusses what future work

should be carried out in the PhD phase of this research and briefly analyses the current

project and lessons learnt in it.
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6.1 Design & Implementation

Running functional tests on the GPU requires two steps:

• Code generation
Turn the original C application into an OpenCL kernel, which can be executed

on the GPU.

• Test execution
Transfer test case values to the GPU memory, build the OpenCL kernel and

launch it in parallel on the GPU threads. Then transfer the results back to the

CPU memory, where they can be checked.

Two systems were developed to automate the steps above - ParTeCL to automate code

generation and a CPU runtime to automate test launching. They are developed sepa-

rately, but the CPU runtime requires the output produced by ParTeCL.

Code generation

ParTeCL translates the original application which is being tested into an OpenCL ker-

nel via a series of code transformations, which alter the way data is being passed to the

program, but leave the original functionality unchanged. In short, the main function

is turned into an OpenCL kernel function and inputs and results are being read and

written to the GPU memory.

ParTeCL also performs code transformations for C features, which are not readily sup-

ported for compilation on the GPU. Features supported via ParTeCL’s code transfor-

mations are global scope variables, standard input/output and standard library calls.

Features which are currently unsupported are recursion, dynamic memory allocation

and file I/O. Benchmarks which use recursion are tested by manually turning the re-

cursive functions into equivalent non-recursive ones.

ParTeCL is implemented in C++14 and uses the Clang LibTooling library. The library

supports code-to-code transformations by building an Abstract Syntax Tree (AST) for

the input program and providing AST Matchers, which are used to identify portions of

the code to be transformed. ParTeCL defines its own AST matchers and uses LibTool-

ing’s Rewriter class to apply particular changes to the original source code.

In addition the OpenCL kernel, ParTeCL also generates data structures for the test case



6.2. Evaluation 59

inputs and results. They are used by the OpenCL runtime to transfer data between the

CPU and GPU memories. Finally, ParTeCL generates a CPU function, which is used

by the CPU runtime to populate the input structures with the test case values during

test execution.

Test execution

The CPU runtime automates test execution. It performs mostly generic CPU actions,

independent of the program which is being tested. It transfers inputs to the GPU mem-

ory, builds and launches the OpenCL kernel in parallel on the GPU threads and trans-

fers the results back to the CPU. In addition, it performs some actions specific to test-

ing. It reads values for the test cases from a text file in an assumed CSV format and

assigns them to the input structures generated by ParTeCL. The CSV format was de-

signed as part of this project. The CPU runtime is implemented in standard C and uses

the standard OpenCL API.

6.2 Evaluation

The evaluation process used four benchmark applications from the SIR [9] and EEMBC

[6] repositories. It consisted of three different stages.

Firstly, OpenCL kernels for all four benchmarks were generated by ParTeCL and their

test cases were executed on an Nvidia Tesla k40m GPU, demonstrating the validity of

the auto-generated kernels. In addition, the testing results produced by the GPU were

compared to those from the CPU in order to empirically establish correctness of testing

on the GPU.

Secondly, performance data from the two SIR benchmarks was collected and compared

to test executions on a single CPU. This demonstrated that high speed-ups are possible,

but also negatively influenced by factors like time for data transfers between the CPU

and GPU memories, large input data size and high degree of control-flow divergence.

Finally, a usability study for the two systems developed in this project was carried out

with six programmers, using a simple example application. It identified new desirable

features for the systems from a usability point of view and demonstrated that automa-

tion successfully abstract away the low-level OpenCL programming model from the

testing process and makes testing on the GPU accessible to general programmers.
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6.3 Limitations & Future Work

This Master’s project carried out preliminary work in automating test launching on the

GPU threads, paving the way for future extensions to the scope and effectiveness of

this approach. This section briefly presents current limitations and future work, which

can be carried out during the PhD phase of the project. The work can be roughly split

into three categories: empirical evaluation, performance optimisation and extending

the systems’ scope and usability.

6.3.1 Empirical Evaluation

Currently, the automated systems are evaluated on only four benchmark applications,

the largest of which has only 564 LOC and 5542 test cases. To conclusively establish

the benefits of the proposed approach and automation, extensive evaluation with more

and larger benchmark applications need to be performed. This evaluation would also

be helpful in guiding and evaluating future performance optimisations.

In addition, the approach can be evaluated on different heterogeneous architectures

in order to determine to what degree its scope and performance depend on hardware

architecture. The effects of different OpenCL thread/block dimensions can also be

examined on different architectures and techniques for choosing the optimal ones can

be researched.

6.3.2 Performance Optimisation

Presently, no performance optimisations are performed when tests are executed on

the GPU, making the effectiveness of the approach susceptible to GPU and OpenCL

limitations. This is observed in the performance results achieved for replace, presented

in Section 5.3.

Thus, the following performance optimisations are considered for future work:

• Data transfer. To mitigate the effects of long data transfers, the CPU runtime

can split test cases in batches and overlap their transfer with kernel execution.

Additionally, pinned memory can be used, as described in [24].
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• Large test inputs. Techniques for efficient memory management on the GPU

should be researched and implemented. Dynamic memory allocation for the

input and results structures on the CPU runtime should also be implemented in

order to ensure that test cases of different sizes take up exactly as much memory

as they need.

• Control-flow divergence. Using control-flow analysis, test cases which take

similar control-flow paths can be identified and grouped together for execution

on the same GPU compute units, resulting in threads executing in lock-step hav-

ing the same instructions. This is promising, as applications with large test suites

are likely to have many test cases with similar control-flow paths.

6.3.3 Extending Scope & Usability

Currently, ParTeCL and the CPU runtime make assumptions about the source code

and type of testing which is being carried out. In particular, ParTeCL assumes that all

functions of the tested program are in a single source file. Additionally, the tool can

presently support functional testing for the full program (system testing), but not for

individual functions (unit testing). It would be easy to remove both of these assump-

tions.

In addition, transformations for the unsupported C features, discussed in Section 4.4,

should be added, as well as for C features found in any new evaluation benchmarks.

Finally, system features improving usability, as suggested by the feedback of the us-

ability study presented in 5.3, can also be added when found useful.

6.4 Critical Analysis

Overall, the Master’s project is successful in achieving its goals. It provides two sys-

tems, which automatically execute test cases in parallel on the GPU threads and pro-

duce correct testing results. While there are still many features which can be added

to make the systems more robust and easy to use, their modular implementation al-

lows that. Even more importantly, the systems can be used to aid future research in

addressing the performance limitations of the approach.

The rest of this section discusses some lessons learnt during this project.
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Firstly, there is a fine balance between perfecting the tools developed during research,

which can take a lot of time for, arguably, not much gain, and spending just enough

effort on them to make them usable. The two extremes were encountered during this

project and, in hindsight, high-level system design should be considered early in im-

plementation, irrespective of how trivial the system seems. However, it should be kept

simple in order to save time consuming changes later in the project.

Secondly, identifying a number of benchmarks to target early on would have been

extremely helpful in implementing robust code transformations and estimating effort.

Ideally, benchmarks should be chosen and evaluated first, their features analysed, and

a common strategy for handling them in the tool should be designed before implemen-

tation.

Finally, specifying the scope and goals of the tools early on would have allowed for

a greater range of testing practices to be supported. In particular, the early goal of

accelerating software tests was clear when implementation first started, but the level of

granularity of testing was not decided, resulting in only system testing being currently

supported by the automated systems. They can be easily extended to support unit

testing, which is included in future work, but this could have been done from the

beginning, enabling more evaluation and results.
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Appendix A

Recursion

This appendix shows the manual rewrite of the recursive amatch function into a non-

recursive function. The function is found in the replace benchmark, which is part of

the SIR repository [9]. The source code of the function is given below.

It is not necessary to completely understand what the function does, in order to study its

structure and see that the recursion is not trivial. The recursive call is made on line 18,

inside two nested while loops (lines 7 and 17) and an if statement. The value returned

by it determines whether the inner while loop is exited. Even then, the outer while

loop may continue executing, causing further recursive calls. The function terminates

when the outer while loop is exited.

1 int amatch(char *lin, int offset , char *pat, int j)

2 {

3 int i, k;

4 bool result , done;

5

6 done = false;

7 while ((!done) && (pat[j] != ENDSTR))

8 if (pat[j] == CLOSURE) {

9 j = j + patsize(pat, j);

10 i = offset;

11 while ((!done) && (lin[i] != ENDSTR)) {

12 result = omatch(lin, &i, pat, j);

13 if (!result)

14 done = true;

15 }

16 done = false;

67
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17 while ((!done) && (i >= offset)) {

18 k = amatch(lin, i, pat, j + patsize(pat, j));

19 if (k >= 0)

20 done = true;

21 else

22 i = i - 1;

23 }

24 offset = k;

25 done = true;

26 }

27 else {

28 result = omatch(lin, &offset , pat, j);

29 if (!result) {

30 offset = -1;

31 done = true;

32 }

33 else

34 j = j + patsize(pat, j);

35 }

36

37 return offset;

38 }

While this is not a trivial recursion to modify, studying its the control flow helps iden-

tifying how a stack can be used to turn it into a non-recursive function. The resulting

code is the following:

1 int amatch(char *lin, int offset , char *pat, int j, int recur)

2 {

3 int i;

4 bool result , done;

5 done = false;

6

7 int stack[10];

8 int iter = 0;

9 int jrec , offrec;

10

11 stack[iter++] = offset;

12 stack[iter++] = j;

13 stack[iter++] = recur;

14

15 while(iter > 0)
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16 {

17 recur = stack[--iter];

18 j = stack[--iter];

19 offset = stack[--iter];

20

21 while ((!done) && (pat[j] != ENDSTR))

22 {

23 if (pat[j] == CLOSURE)

24 {

25 j = j + patsize(pat, j);

26 i = offset;

27 while ((!done) && (lin[i] != ENDSTR)) {

28 result = omatch(lin, &i, pat, j);

29 if (!result)

30 done = true;

31 }

32 done = false;

33 jrec = j;

34 offrec = offset;

35

36 if(!done && i >= offrec)

37 {

38 stack[iter++] = i;

39 stack[iter++] = jrec + patsize(pat, jrec);

40 stack[iter++] = 1;

41 recur = 0;

42 break;

43 }

44

45 done = true;

46 }

47 else

48 {

49 result = omatch(lin, &offset , pat, j);

50 if (!result)

51 {

52 offset = -1;

53 done = true;

54 }

55 else

56 j = j + patsize(pat, j);.inp

57 }



70 Appendix A. Recursion

58 }

59

60 if(recur > 0)

61 {

62 done = false;

63 if(offset >= 0)

64 done = true;

65 else

66 i = i - 1;

67

68 if(!done && i >= offrec)

69 {

70 stack[iter++] = i;

71 stack[iter++] = jrec + patsize(pat, jrec);

72 stack[iter++] = 1;

73 }

74 }

75 }

76 return offset;

77 }
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Usability Testing

B.1 Test Program - add-multi.c

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int add(int a, int b){

5 return a + b;

6 }

7

8 int main(int argc , char* argv[]){

9 if(argc < 2){

10 printf("Please , enter how many integers you’d like to add.\n");

11 return 0;

12 }

13 int num_ints = atoi(argv[1]);

14

15 int sum = 0;

16 for(int i = 0; i < num_ints; i++){

17 char str[10];

18 fgets(str, 10, stdin);

19 sum = add(sum, atoi(str));

20 }

21

22 printf("sum = %d\n", sum);

23 }

71
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B.2 Actions

1. Become familiar with the add-multi.c program:

– Identify what the inputs and outputs to the program are.

– Identify what a test case should look like.

2. Write 5 test cases in the CSV format required by ParTeCL.

3. Write the configuration file, required by ParTeCL.

4. Run ParTeCL on the source code and configuration file.

5. Build the CPU runtime.

6. Run the tests.

7. Inspect results. Are they what you expected?

B.3 Questions

On a scale from 1 to 5, where 1 is not at all easy and 5 is very easy:

1. How easy to use do you find the CSV format for test cases?

2. How easy to use do you find the format for the configuration file?

3. How easy did you find to run ParTeCL?

4. How easy did you find to build the CPU runtime?

5. How easy did you find to run the tests?

6. Overall, how easy did you find the whole process?

Do you have any comments and suggestions?
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