Accelerated Test Execution Using GPUs

Vanya Yaneva
Supervisors: Ajitha Rajan, Christophe Dubach

Mathworks
May 27, 2016

EPSRC Centre for Doctoral Training in E P S RC
PerVGSiVe qua"elism Engineering anlehysicaLSci eeeee

Researc h Counci L

The Problem

Software testing is time consuming

Functional testing

Input 1 — Expected output 1

Input 2 — Expected output 2

Application
Input 3 ——- Expected output 3

Input n —— Expected output n

%) THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
P4 - Qf EDINBURGH PerVGSive Pa rallelism Engineering and Physical Sciences

OINBY Research Council

The Problem

Software testing is time consuming

Input 1

Input 2

Input 3

Input n

Functional testing

ﬁ-

ﬁ

Application

ﬁ

ﬁ

The test suite of a non-trivial system:

* could have thousands of test cases

e could take hours, days or even weeks to execute

> THE UNIVERSITY

NJ: of EDINBURGH

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

Expected output 1

Expected output 2

Expected output 3

Expected output n

EPSRC

Engineering and Physical Sciences
Research Council

The Problem

Software testing is time consuming

Functional testing

Input 1 — Expected output 1

Input 2 — Expected output 2

Application

—— Expected output 3

Input 3

Input n —— Expected output n

Characteristics:
1. Executions are independent

%) THE UNIVERSITY EPSRC Centre for Doctoral Training in E P S RC
P4 - Qf EDINBURGH PerVGSive Pa rallelism Engineering and Physical Sciences

OINBY Research Council

The Problem

Software testing is time consuming

Functional testing

Input 1 — Expected output 1

Input 2 — Expected output 2

Application

—— Expected output 3

Input 3

Input n —— Expected output n

Characteristics:
1. Executions are independent
2. Executions are data parallel

. THE UNIVERSITY EPSRC Centre for Doctoral Training in E P S RC
P4 - Qf EDINBURGH PerVOSive Pa rallelism Engineering and Physical Sciences

OINBY Research Council

The Problem

Software testing is time consuming

Characteristics:

1. Executions are independent
2. Executions are data parallel

Input 1

Input 2

Input 3

Input n

Functional testing

ﬁ-

ﬁ

Application

ﬁ

ﬁ

3. Parallel executions are already employed in industry

> THE UNIVERSITY

N): of EDINBURGH

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

Expected output 1

Expected output 2

Expected output 3

Expected output n

EPSRC

Engineering and Physical Sciences
Research Council

CPU Servers vs. GPUs

CPU Servers GPUs
* Comparatively expensive
* Do not scale to thousands of
test cases
* Extremely under-utilised during
testing (up to 90% stays idle)
EPSRC Centre for Doctoral Training in E PS RC

PerVGSive Pa rallelism Engineering and Physical Sciences

Research Council

CPU Servers vs. GPUs

CPU Servers

* Comparatively expensive

* Do not scale to thousands of
test cases

* Extremely under-utilised during
testing (up to 90% stays idle)

GPUs

* Cheap and widely available

* Large scale parallelism,
thousands of threads

 SIMD architecure — suitable
for testing

EPSRC Centre for Doctoral Training in E PS RC
PerVGSive Pa rallelism Engineering and Physical Sciences

Research Council

CPU Servers vs. GPUs

CPU Servers GPUs
* Comparatively expensive * Cheap and widely available
* Do not scale to thousands of * Large scale parallelism,
test cases thousands of threads
* Extremely under-utilised during * SIMD architecure — suitable

testing (up to 90% stays idle) for testing

GPUs have the potential to make a huge impact on
development schedules and costs associated with testing.

#@: THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
% 4D Q_Oz va EDINBURGH PerVGSive Pa rqllelism Engineering and Physical Sciences

& .
OINBY Research Council

Proposed Approach
Execute test cases in parallel on the GPU threads

==

El'estcaselj El'estcasezj_)

* Test cases are stored in an array and

Load Load Load Load
Instructions Data Data Data transferred tO the GPU
Execute
Input[] = testcase0 ... testcaseN-1
Copy Input[] to GPU device memory ° EaCh GPU thread exeCUteS the same
Launch N GPU threads .
program on a single element of the
ThreadID|O0|1]2]|3]|4]|5]|6|7 N-2|N-1 . .
))))))))))) array, i.e. on a single test case.

output[threadldx] = program(input[threadIdx])

5 5 5 5 S 5 5 5 5 5 5 * Original program fuctionality is

Copy Output[] from device memory to CPU uandlfled-

Source: A. RAJAN, S. SHARMA, P. SCHRAMMEL and D. KROENING, Accelerated Test Execution Using GPUs in ASE 2014

% . THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
q&e QJFEDINBURGH PerVGSIve Parallellsm Engineering and Physical Sciences

Research Council

Previous Work

Performance
30
o5 b /
20
g
- 15 — == idctrn01
o) =
8. == gifftrn01
(%) aiiffto1
10
=== pbw
5
& e e e A
0
1024 2048 4096 8192 16384
Number of tests

GPU used: Nvidia GeForce GTX 670

Source: A. RAJAN, S. SHARMA, P. SCHRAMMEL and D. KROENING, Accelerated Test Execution Using GPUs in ASE 2014

THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
of EDINBURGH Pervasive Parallelism

Challenges

1. GPUs use low-level programming models, eg. CUDA, OpenCL.
* Test launching is not trivial to implement.

* Not available to general programmers.

2. Only a subset of C/C++ features is supported for compilation on the
GPU. Unsupported features include:

recursion, dynamic memory allocation, standard library calls

. THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
Qf‘ EDINBURGH PerVGSive Parallelism Engineering and Physical Sciences

Research Council

Challenges

3. Performance is penalised by

* control-flow divergence * data transfers between the CPU
and the GPU memory

%) THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
?"@ 45 Q_Cf Qf EDINBURGH PerVGSive Pa rqllelism Engineering and Physical Sciences

Orne® Research Council

Challenges

3. Performance is penalised by

* control-flow divergence * data transfers between the CPU
Lf (cond) { and the GPU memory
// instr 1
} else {
// instr 2
}
thread 1 thread 2
instr 1 waits... time,
waits... instr 2 time,

total time = time, + time,

EPSRC Centre for Doctoral Training in E PS RC
Pervasive Parallelism

Research Council

Challenges

3. Performance is penalised by

* control-flow divergence

if (cond) {
// instr 1
} else {
// instr 2

thread 1 thread 2

instr 1 waits...

waits... instr 2

total time = time, + time,

time,

t/m62

» data transfers between the CPU
and the GPU memory

T

* Transfer test cases
to the GPU memory

* Launch OpenCL
kernel

* Tansfer results back

k to CPU memory /

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

-

_

GPU

Execute OpenCL
kernel in parallel

~N

J

EPSRC

Engineering and Physical Sciences
Research Council

Current Work

Build a tool which generates OpenCL code to launch the test cases
in parallel on the GPU.

>Ti-l/!‘ > THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC

"‘600 S Qf EDINBURGH PerVGSive Parqllelism Engineer ing and Physical Sciences

Researc h C ooooo il

Current Work

Build a tool which generates OpenCL code to launch the test cases
in parallel on the GPU.

C programs

fUnmodified\
source files T

Config file ==

. J

Tool
(based on
Clang)

: THE UNIVERSITY
qf EDINBURGH

-

Generated

-»| executed on the
GPU threads

-

OpenCL kernel,

Y4

Supplied with tool

C Runtime,
which builds the
OpenCL kernel
and launches it

/

_ J

the GPU

_

N\

Supplied by user

Test cases
(in CSV format)

J

\Full program which launches the test cases in parallely

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

EPSRC

Engineering and Physical Sciences
Researc h Counci il

Example

Original code
int add(int a, int b) {
return a+b;

}
int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi (argv([1]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));

THE UNIVERSITY
of EDINBURGH

EPSRC Centre for Doctoral Training in
Pervasive Parallelism

EPSRC

Engineering and Physical Sciences
Research Council

Example

Original code
int add(int a, int b) {

return a+b;

int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi (argv([1]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));

%) THE UNIVERSITY
V- of EDINBURGH

Generated OpenCL code

int add(int a, int b) {
return a+b;
}
__kernel void main_kernel (
__global struct input * inputs,

__global struct result * results) {

> int idx =get_global_id(0);
struct input input = inputs[idx];
int argc = input.argc;

results[idx] .test_case_num = input.test_case_num;

if (argc > 2) {
int a = input.a;
int b = input .b;
/*printf ("%d + %d = %d\n", a, b, add(a, b));*/
results[idx] .result = add(a, b);
}

}
EPSRC Centre for Doctoral Training in

Pervasive Parallelism

EPSRC

Engineering and Physical Sciences
Research Council

Example

Original code
int add(int a, int b) {

return a+b;

int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi (argv([1]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));

%) THE UNIVERSITY
V- of EDINBURGH

Generated OpenCL code

int add(int a, int b) {
return a+b;
}
__kernel void main_kernel (
__global struct input * inputs,

__global struct result * results) {

> int idx =get_global_id(0);
struct input input = inputs[idx];
int argc = input.argc;

results[idx] .test_case_num = input.test_case_num;

if (argc > 2) {
int a = input.a;
int b = input .b;
/*printf ("%d + %d = %d\n", a, b, add(a, b));*/
results[idx] .result = add(a, b);
}

}
EPSRC Centre for Doctoral Training in

Pervasive Parallelism

EPSRC

Engineering and Physical Sciences
Research Council

Example

Original code
int add(int a, int b) {

return a+b;

int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi (argv([1]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));

THE UNIVERSITY
of EDINBURGH

Generated OpenCL code

int add(int a, int b) {
return a+b;
}
__kernel void main_kernel (
__global struct input * inputs,

__global struct result * results) {

> int idx =get_global_id(0);

struct input input = inputs[idx];
int argc = input.argc;

results[idx] .test_case_num = input.test_case_num;

if (argc > 2) {
int a = input.a;
int b = input .b;
/*printf ("%d + %d = %d\n", a, b, add(a, b));*/
results[idx] .result = add(a, b);
}

}
EPSRC Centre for Doctoral Training in

Pervasive Parallelism

EPSRC

Engineering and Physical Sciences
Research Council

Example

Original code
int add(int a, int b) {

return a+b;

int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi(argv[1l]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));

THE UNIVERSITY
of EDINBURGH

Generated OpenCL code

int add(int a, int b) {
return a+b;
}
__kernel void main_kernel (
__global struct input * inputs,

__global struct result * results) {

> int idx =get_global_id(0);

struct input input = inputs[idx];
int argc = input.argc;

results[idx] .test_case_num = input.test_case_num;

if (argc > 2) {
int a =input.a;
int b = input .b;
/*printf ("%d + %d = %d\n", a, b, add(a, b));*/
results[idx] .result = add(a, b);
}

}
EPSRC Centre for Doctoral Training in

Pervasive Parallelism

EPSRC

Engineering and Physical Sciences
Research Council

Example

Original code
int add(int a, int b) {

return a+b;

int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi (argv([1]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));

THE UNIVERSITY
of EDINBURGH

Generated OpenCL code

int add(int a, int b) {
return a+b;
}
__kernel void main_kernel (
__global struct input * inputs,

__global struct result * results) {

> int idx =get_global_id(0);

struct input input = inputs[idx];
int argc = input.argc;

results[idx] .test_case_num = input.test_case_num;

if (argc > 2) {
int a = input.a;
int b = input .b;
/*printf("%d + %d = %d\n", a, b, add(a, b));*/
results[idx] .result = add(a, b);
}

}
EPSRC Centre for Doctoral Training in E PS RC

PerVGSive Pa rallelism Engineering and Physical Sciences

Research Council

Example

Original code
int add(int a, int b) {

return a+b;

int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi (argv([1]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));

%) THE UNIVERSITY
V- of EDINBURGH

Generated OpenCL code

int add(int a, int b) {
return a+b;
}
__kernel void main_kernel (
__global struct input * inputs,

__global struct result * results) {

> int idx =get_global_id(0);
struct input input = inputs[idx];
int argc = input.argc;

results[idx] .test_case_num = input.test_case_num;

if (argc > 2) {
int a = input.a;
int b = input .b;
/*printf ("%d + %d = %d\n", a, b, add(a, b));*/
results[idx] .result = add(a, b);
}

}
EPSRC Centre for Doctoral Training in

Pervasive Parallelism

EPSRC

Engineering and Physical Sciences
Research Council

C Features

Out of the box
- simple data types, structs, vectors, one-dim arrays

- pure functions, function calls, double precision (for OpenCL 1.2)

With transformations
- global scope variables: turn them into local variables and pass them as function arguments
- std in/out

- system calls: partition function and perform on the CPU

Currently unsupported

- library calls: study what library implementations exist for OpenCL; use my implementations
- multi-dimensional arrays

- dynamic memory allocation

- recursion: not possible in OpenCL (yet), but can be emulated with a stack

. THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
& \)Q.‘f Qf‘ EDINBURGH PervaSive Parallelism Engineering and Physical Sciences

Research Council

Preliminary Performance Results - tcas

M Input transfer ® GPU execution * Result transfer ™ Total time

10

)
£
(O]
£
l_
]
1000 2000 4000 8000 16000 32000
180
160
140
S 120
2°)
& 100
Q.
n
80
60
40
1000 2000 4000 8000 16000 32000
GPU used: Nvidia Tesla k40 Number oftests
THE UNIVERSITY EPSRC Centre for Doctoral Training in

of EDINBURGH Pervasive Parallelism

0.1
) ||“| ||| ||“| ||| ||||| ||| ‘|||| ‘|| |||||
0

64000 128000

64000 128000

EPSRC

Engineering and Physical Sciences
Research Council

Future Work

1. Evaluate, using benchmarks from different domains, eg. automotive, banking,
embedded systems:

 characterise the applications for which GPU testing is feasible

S

% THE UNIVERSITY EPSRC Centre for Doctoral Training in E P S RC
‘ Q_cic QfEDINBURGH PerVGSive Parallelism Engineering and Physical Sciences

& .
DINBY Research Council

Future Work

1. Evaluate, using benchmarks from different domains, eg. automotive, banking,
embedded systems:

 characterise the applications for which GPU testing is feasible

2. Address performance issues:
* data transfer
> gplit test cases in groups and overlap transfer to the GPU with test case execution

S

. THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
‘ éf QfEDINBURGH PerVGSive Parallelism Engineering and Physical Sciences

& .
DINBY Research Council

Future Work

1. Evaluate, using benchmarks from different domains, eg. automotive, banking,
embedded systems:

 characterise the applications for which GPU testing is feasible

2. Address performance issues:
 data transfer
> split test cases in groups and overlap transfer to the GPU with test case execution
 control-flow divergence

> group test cases with similar control-flow paths together

S

. THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
‘ éf QfEDINBURGH PerVGSive Parallelism Engineering and Physical Sciences

& .
DINBY Research Council

Future Work

1. Evaluate, using benchmarks from different domains, eg. automotive, banking,
embedded systems:

 characterise the applications for which GPU testing is feasible

2. Address performance issues:
 data transfer
> split test cases in groups and overlap transfer to the GPU with test case execution
 control-flow divergence

> group test cases with similar control-flow paths together

3. Extend the tool to support additional C features

S

. THE UNIVERSITY EPSRC Centre for Doctoral Training in E PS RC
‘ éf QfEDINBURGH PerVGSive Parallelism Engineering and Physical Sciences

& .
DINBY Research Council

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

