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The Problem

Software testing is time consuming

Functional testing

Input 1 — Expected output 1

Input 2 — Expected output 2

Application
Input 3 ——- Expected output 3

Input n —— Expected output n
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The test suite of a non-trivial system:

* could have thousands of test cases

e could take hours, days or even weeks to execute
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Characteristics:
1. Executions are independent
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The Problem

Software testing is time consuming

Characteristics:

1. Executions are independent
2. Executions are data parallel
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3. Parallel executions are already employed in industry
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CPU Servers vs. GPUs

CPU Servers GPUs
* Comparatively expensive
* Do not scale to thousands of
test cases
* Extremely under-utilised during
testing (up to 90% stays idle)
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CPU Servers vs. GPUs

CPU Servers GPUs
* Comparatively expensive * Cheap and widely available
* Do not scale to thousands of * Large scale parallelism,
test cases thousands of threads
* Extremely under-utilised during * SIMD architecure — suitable

testing (up to 90% stays idle) for testing

GPUs have the potential to make a huge impact on
development schedules and costs associated with testing.
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Proposed Approach
Execute test cases in parallel on the GPU threads

==

El'estcaselj El'estcasezj_ )

* Test cases are stored in an array and

Load Load Load Load
Instructions Data Data Data transferred tO the GPU
Execute
Input[] = testcase0 ... testcaseN-1
Copy Input[] to GPU device memory ° EaCh GPU thread exeCUteS the same
Launch N GPU threads .
program on a single element of the
ThreadID|O0|1]2]|3]|4]|5]|6|7 N-2|N-1 . .
) ) ) ) ) ) ) ) ) ) ) array, i.e. on a single test case.

output[threadldx] = program(input[threadIdx])

5 5 5 5 S 5 5 5 5 5 5 * Original program fuctionality is

Copy Output[] from device memory to CPU uandlfled-

Source: A. RAJAN, S. SHARMA, P. SCHRAMMEL and D. KROENING, Accelerated Test Execution Using GPUs in ASE 2014
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Previous Work

Performance
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GPU used: Nvidia GeForce GTX 670

Source: A. RAJAN, S. SHARMA, P. SCHRAMMEL and D. KROENING, Accelerated Test Execution Using GPUs in ASE 2014
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Challenges

1. GPUs use low-level programming models, eg. CUDA, OpenCL.
* Test launching is not trivial to implement.

* Not available to general programmers.

2. Only a subset of C/C++ features is supported for compilation on the
GPU. Unsupported features include:

recursion, dynamic memory allocation, standard library calls
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Challenges

3. Performance is penalised by

* control-flow divergence * data transfers between the CPU
and the GPU memory
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} else {
// instr 2
}
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Challenges

3. Performance is penalised by

* control-flow divergence

if (cond) {
// instr 1
} else {
// instr 2

thread 1 thread 2

instr 1 waits...

waits... instr 2

total time = time, + time,

time,

t/m62

» data transfers between the CPU
and the GPU memory

T

* Transfer test cases
to the GPU memory

* Launch OpenCL
kernel

* Tansfer results back

k to CPU memory /
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Current Work

Build a tool which generates OpenCL code to launch the test cases
in parallel on the GPU.
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Current Work

Build a tool which generates OpenCL code to launch the test cases
in parallel on the GPU.

C programs

fUnmodified\
source files T

Config file ==

. J

Tool
(based on
Clang)
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C Runtime,
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OpenCL kernel
and launches it
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the GPU
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Supplied by user

Test cases
(in CSV format)
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Example

Original code
int add(int a, int b) {
return a+b;

}
int main (int argc, char* argv[]) {
if (argc > 2) {
int a = atoi (argv([1]);
int b =atoi (argv[2]);
printf("%d + %d = %d\n", a, b,

add(a, b));
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Generated OpenCL code

int add(int a, int b) {
return a+b;
}
__kernel void main_kernel (
__global struct input * inputs,

__global struct result * results) {

> int idx =get_global_id(0);
struct input input = inputs[idx];
int argc = input.argc;

results[idx] .test_case_num = input.test_case_num;

if (argc > 2) {
int a = input.a;
int b = input .b;
/*printf ("%d + %d = %d\n", a, b, add(a, b));*/
results[idx] .result = add(a, b);
}

}
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C Features

Out of the box
- simple data types, structs, vectors, one-dim arrays

- pure functions, function calls, double precision (for OpenCL 1.2)

With transformations
- global scope variables: turn them into local variables and pass them as function arguments
- std in/out

- system calls: partition function and perform on the CPU

Currently unsupported

- library calls: study what library implementations exist for OpenCL; use my implementations
- multi-dimensional arrays

- dynamic memory allocation

- recursion: not possible in OpenCL (yet), but can be emulated with a stack
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Preliminary Performance Results - tcas
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Future Work

1. Evaluate, using benchmarks from different domains, eg. automotive, banking,
embedded systems:

 characterise the applications for which GPU testing is feasible
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Future Work

1. Evaluate, using benchmarks from different domains, eg. automotive, banking,
embedded systems:

 characterise the applications for which GPU testing is feasible

2. Address performance issues:
 data transfer
> split test cases in groups and overlap transfer to the GPU with test case execution
 control-flow divergence

> group test cases with similar control-flow paths together

3. Extend the tool to support additional C features
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