
16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 1/48

VANYA YANEVAVANYA YANEVA
vanya.yaneva@ed.ac.uk

PhD Candidate in So�ware Testing at the University of Edinburgh.

My background is in High Performance Computing.

My PhD work is on accelerating so�ware testing by executing tests in parallel on the GPU.

I am interested in:

functional so�ware testing
parallel architectures and programming models
compiler optimisations and compiler-based tools

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 3/48

ACCELERATED FINITE STATE MACHINE TESTACCELERATED FINITE STATE MACHINE TEST
EXECUTION USING GPUSEXECUTION USING GPUS

Vanya Yaneva

Arnav Kapoor, Ajitha Rajan, Christophe Dubach

Published in APSEC'18

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 5/48

MODEL-BASED DEVELOPMENTMODEL-BASED DEVELOPMENT
So�ware is implemented and tested based on a model.

Specification Implementation

Model

model = specification ?

Execute tests on the model

There are many ways to define a model:

UML formal specification languages (Z, B, Alloy) block/state charts

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 7/48

FINITE STATE MACHINES (FSMS)FINITE STATE MACHINES (FSMS)
A common model for a variety of systems.

control systems [Saifan&Mustafa 2014]

network intrusion detection [Xu et al. 2014]

B0

M
H

B1L

L B2
M

B3H

M

H

signal processing tools [Lehane et al. 2016]

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 9/48

FINITE STATE MACHINES (FSMS)FINITE STATE MACHINES (FSMS)

B0

M
H

B1L

L B2
M

B3H

M

H

Model for a digital oscilloscope

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 11/48

TESTING FSMSTESTING FSMS

Functional (black-box) testing
Test input 1

Test input 2

Test input n

Expected output 1

Expected output 2

Expected output n

?

?

?

FSM

1. Generate the test inputs
2. Execute the tests
3. Check the results

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 13/48

GENERATING TESTSGENERATING TESTS
based on coverage criteria

B0

M
H

B1L

L B2
M

B3H

M

H

All-state coverage:
MLMH -> 0001

✘ weak fault-finding [Briand et al. 2004]

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 15/48

GENERATING TESTSGENERATING TESTS
based on coverage criteria

B0

M
H

B1L

L B2
M

B3H

M

H

All-transition coverage:
HLLMMH -> 000001
MLH -> 001

✘ weak fault-finding [Briand et al. 2004]

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 17/48

GENERATING TESTSGENERATING TESTS
based on coverage criteria

B0

M
H

B1L

L B2
M

B3H

M

H

All-transition pair coverage:
HLLMMH -> 000001
MLH -> 001
LMH -> 001

✔ strong fault-finding [Briand et al. 2004]

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 19/48

THE PROBLEMTHE PROBLEM

Some finite state machines:

1K states and transitions

1M test sequences

hours to execute

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 21/48

OUR APPROACHOUR APPROACH
Execute the tests in parallel on the GPU.

Cheap and widely available Provide thousands of thread

Host

(CPU)

Transfer FSM & test inputs

Device

(GPU)
Tests

FSM

Transfer results Execute tests
in parallel

one GPU thread = one test

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 23/48

WE HAVE DONE IT BEFOREWE HAVE DONE IT BEFORE
for testing embedded C programs.

ISSTA'17

Max. speedup 53x (avg. 16x)

on 9 subjects from
EEMBC embedded benchmark suite
when compared to a single CPU

Completely automated parallel testing on the GPU

C Program
ParTeCL

CodeGen OpenCL
Test

execution
on the GPU

ParTeCL

Runtime

Test cases

C

In our current work we extend ParTeCL Runtime,
providing a completely automated process.

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 25/48

FSMS ARE DIFFERENT TO C PROGRAMSFSMS ARE DIFFERENT TO C PROGRAMS
FSM execution involves a lot of memory accesses.

Global memory
Constant memory

(read-only)

Local memory Local memory

Thread 1

Private

memory

Private

memory

Private

memory

Private

memory

Work group 1 Work group M

…

Slow, unless coalesced access Fast

Cache

Fast

Thread N… Thread 1 Thread N…

FSM and tests are in global memory.
FSM is in constant memory (if it fits).

To improve performance we need:

compact representation AND/OR coalesced access

We investigate 2 FSM memory layouts and 3 test memory layouts.

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 27/48

RESEARCH QUESTIONSRESEARCH QUESTIONS

RQ1: Test execution speedup
What is the speedup on the GPU, compared to a 16-core CPU?

RQ2: FSM layout
Does the choice of FSM layout influence the speedup?

RQ3: Test layout
Does the choice of test layout influence the speedup?

RQ4: Sorting the tests based on length
Does sorting the tests influence the speedup?

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 29/48

EXPERIMENT SUBJECTSEXPERIMENT SUBJECTS

Tests generated based on all-transition pair criteria.

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 31/48

RQ1: TEST EXECUTION SPEEDUPRQ1: TEST EXECUTION SPEEDUP
using the fastest configurations for GPU and 16-core CPU

Max. speedup 12x (avg. 6.4x)

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 35/48

B0

B1

B2

L, B1, 0 M, B0, 0 H, B0, 0

L, B1, 0 M, B2, 0 H, B3, 1

M, B2, 0 H, B3, 1

Sparse
✔ compact encoding
✘ expensive search for each test input

B0

B1

B2

B1, 0 B0, 0 B0, 0

B1, 0 B2, 0 B3, 1

B2, 0 B3, 1

B3 padding padding padding

L M H

padding

Dense

✔ constant search for each test input
✘ padding adds memory overhead

RQ2: FSM LAYOUT IN MEMORYRQ2: FSM LAYOUT IN MEMORY

B0

M
H

B1L

L B2
M

B3H

M

H

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 37/48

RQ2: FSM LAYOUT IN MEMORY - RESULTSRQ2: FSM LAYOUT IN MEMORY - RESULTS

Max. speedup 4.2x

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 39/48

RQ3: TEST LAYOUT IN MEMORYRQ3: TEST LAYOUT IN MEMORY

T1

T2

TN

.
.
.

Contiguous memory

Padded

✔ easy to implement
✘ padding adds memory overhead
✘ no memory coalescing

T1 T2 TN

...

Contiguous memory

Padded-transposed

✔ memory coalescing

T1 T2 TN

...

0 k m

0 k m

offsets

...

With-offsets
✘ no memory coalescing
✔ compact layout

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 41/48

RQ3: TEST LAYOUT IN MEMORY - RESULTSRQ3: TEST LAYOUT IN MEMORY - RESULTS

Max. speedup 7.8x

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 43/48

RQ4: SORTING TESTS BASED ON LENGTH - RESULTSRQ4: SORTING TESTS BASED ON LENGTH - RESULTS

Max. speedup 12x (avg. 6x)

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 45/48

SUMMARYSUMMARY

GPUs can accelerate functional testing of FSMs.

Speedup compared to 16-core CPU is max. 12x (avg. 6x)
with optimised FSM/test layout and load balancing.

We have automated the process.
 github.com/wyaneva/partecl-runtime

16/01/2019 Accelerating Test Execution Using GPUs

http://localhost:8000/?/print-pdf 47/48

REFERENCESREFERENCES
1. [Saifan&Mustafa 2014] Using Formal Methods for Test Case Generation According to Transition-Based Coverage

Criteria - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Cruise-control-
system-finite-state-machine-diagram_fig2_283902282 [accessed 4 Dec, 2018]

2. [Xu et al.2014] Xu, Yang et al. TFA: A Tunable Finite Automaton for Pattern Matching in Network Intrusion
Detection Systems. IEEE Journal on Selected Areas in Communications 32 (2014): 1810-1821.

3. [Lehane et al. 2016] Lehane et al. Digital Triggering Using Finite State Machines. US Patent App. 14/957,491.
March 2016

4. [Briand et al. 2004] Briand et al. Using Simulation to Empirically investigate Test Coverage Criteria Based on
Statechart. In ICSE 2004

