VANYA YANEVA

vanya.yaneva@ed.ac.uk

e PhD Candidate in Software Testing at the University of Edinburgh.

e My background is in High Performance Computing.
e My PhD work is on accelerating software testing by executing tests in parallel on the GPU.

e | am interested in:
= functional software testing
= parallel architectures and programming models
= compiler optimisations and compiler-based tools

EPSRC Centre for Doctoral Training in

THE UNIVERSITY of EDINBURGH

informatics Pervasive Parallelism




ACCELERATED FINITE STATE MACHINE TEST
EXECUTION USING GPUS

Vanya Yaneva
Arnav Kapoor, Ajitha Rajan, Christophe Dubach

Published in APSEC'18

e ML g EPSRC Centre for Doctoral Training in
Z@). THEUNIVERSITYof EDINBURGH INTERNATIONAL INSTITUTE OF

€ informatics NTERNATIONAL INSTITUTE O Pervasive Parallelism

DDDDDDDDD




MODEL-BASED DEVELOPMENT

Software is implemented and tested based on a model.

Model

g Implementation

model = specification ?
Execute tests on the model

Specification

There are many ways to define a model:
e UML e formal specification languages (Z, B, Alloy) e block/state charts



FINITE STATE MACHINES (FSMS)

A common model for a variety of systems.
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FINITE STATE MACHINES (FSMS)
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TESTING FSMS

Functional (black-box) testing

FSM

¢ o

1. Generate the test inputs
2. Execute the tests
3. Check the results




GENERATING TESTS

based on coverage criteria
All-state coverage:
e MLMH ->0001

X weak fault-finding [Briandetal. 2004]




GENERATING TESTS

based on coverage criteria
All-transition coverage:

e HLLMMH -> 000001
e MLH->001

X weak fault—finding [Briand et al. 2004]



GENERATING TESTS

based on coverage criteria
All-transition pair coverage:

e HLLMMH -> 000001
e MLH ->001
e LMH ->001

v strong fault—finding [Briand et al. 2004]



THE PROBLEM

Some finite state machines:

@ states and transitions

@ test sequences

hours to execute




OUR APPROACH

Execute the tests in parallel on the GPU.

e Cheap and widely available ¢ Provide thousands of thread

Transfer FSM & test inputs

/\

FSM Device

(GPU)

Tests ——

\/

Transfer results Execute tests

in parallel

one GPU thread = one test



WE HAVE DONE IT BEFORE

for testing embedded C programs.
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FSMS ARE DIFFERENT TO C PROGRAMS

FSM execution involves a lot of memory accesses.

Slow, unless coalesced access Fast

Global memory Confrte:r(;forzleyr;\ory

Local memory
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Fast

Local memory

Thread 1

!

Thread N

!

Private
memory

Private
memory

Thread 1

!

Private
memory

Thread N

!

Private
memory

Work group 1

Work group M

e FSM and tests are in global memory.
e FSMis in constant memory (if it fits).

To improve performance we need:

compact representation AND/OR coalesced access

We investigate 2 FSM memory layouts and 3 test memory layouts.



RESEARCH QUESTIONS

RQ1: Test execution speedup
What is the speedup on the GPU, compared to a 16-core CPU?

RQ2: FSM layout

Does the choice of FSM layout influence the speedup?

RQ3: Test layout

Does the choice of test layout influence the speedup?

RQ4: Sorting the tests based on length

Does sorting the tests influence the speedup?



EXPERIMENT SUBJECTS

FSM Domain #States  #Inputs #Tests
ssl intrusion detection (17-filter) 34 256 1475 251
battlefield? intrusion detection (17-filter) 71 256 1476 796
dns intrusion detection (17-filter) 197 256 8 533 671
aim intrusion detection (17-filter) 41 256 1 344 963
rtp intrusion detection (17-filter) 28 256 1536 723
tsp intrusion detection (17-filter) 27 256 1162 511
yahoo intrusion detection (17-filter) 54 256 2 627 405
ntp intrusion detection (17-filter) 31 256 1374 296
hotline intrusion detection (17-filter) 34 256 1216 433
h323 intrusion detection (17-filter) 46 256 2 241 832
halflife? intrusion detection (17-filter) 24 256 1 088 409
counterstrike-source intrusion detection (17-filter) 30 256 1472 463
keysight digital signal processing 4004 3 36 027

Tests generated based on all-transition pair criteria.



Speedup compared to 16-core CPU
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RQ2: FSM LAYOUT IN MEMORY

L, B1,0

M, BO, O

H, BO, O

L, B1,0

M, B2, 0

H, B3, 1

fe

M, B2, 0

H, B3, 1

e X expensive search for each test input

Sparse
e v compact encoding

Yoo

Bl, O | BO, O | BO! 0
Bl, O | BZ, 0 | 831 1
padding— B2,0 — B3,1
padding — padding — padding
Dense

e v constantsearch for each test input
e X padding adds memory overhead




Speedup compared to 16-core CPU
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RQ3: TEST LAYOUT IN MEMORY

Contiguous memor>y Contiguous mem:ry
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e v easytoimplement e X no memory coalescing
e X padding adds memory overhead e v memory coalescing e v compact layout

e X no memory coalescing



] = o o] =1 o0

Speed up compared to 16-core CPU
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RQ3: TEST LAYOUT IN MEMORY - RESULTS
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RQ4: SORTING TESTS BASED ON LENGTH - RESULTS
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SUMMARY

GPUs can accelerate functional testing of FSMs.

iﬂ Speedup compared to 16-core CPU is max. 12x (avg. 6x)
with optimised FSM/test layout and load balancing.

g:é} We have automated the process.

0 github.com/wyaneva/partecl-runtime
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