VANYA YANEVA

vanya.yaneva@ed.ac.uk

e PhD Candidate in Software Testing at the University of Edinburgh.

e My background is in High Performance Computing.
e My PhD work is on accelerating software testing by executing tests in parallel on the GPU.

e | am interested in:
= functional software testing
= parallel architectures and programming models
= compiler optimisations and compiler-based tools

EPSRC Centre for Doctoral Training in

THE UNIVERSITY of EDINBURGH

informatics Pervasive Parallelism

ACCELERATED FINITE STATE MACHINE TEST
EXECUTION USING GPUS

Vanya Yaneva
Arnav Kapoor, Ajitha Rajan, Christophe Dubach

Published in APSEC'18

e ML g EPSRC Centre for Doctoral Training in
Z@). THEUNIVERSITYof EDINBURGH INTERNATIONAL INSTITUTE OF

€ informatics NTERNATIONAL INSTITUTE O Pervasive Parallelism

DDDDDDDDD

MODEL-BASED DEVELOPMENT

Software is implemented and tested based on a model.

Model

g Implementation

model = specification ?
Execute tests on the model

Specification

There are many ways to define a model:
e UML e formal specification languages (Z, B, Alloy) e block/state charts

FINITE STATE MACHINES (FSMS)

A common model for a variety of systems.

Engine Off Engine On
Switch_key="off", target_speed=0, Switch_key="on" | | target_speed=0, car_sreed=0,
car_speed=0, control_state="Inactive_st", control_state="Inactive_st",
cruise_system="off", cruise_system="off",
speed_control_state="disable" speed_control_state="disable"
Y (a) NFA
4 i i Accelerator
Cruise Adtive

target_speed=0, car_sp2ed=08& < 240, @

control_state="Inactive_st",

e e clelclolelo

speed control state="disable"

| target_speed >0 & 240 \ l

contro_state="Active_st",
——®cruise_system="on",
(peed_cuntrul_mtE:'enabl:'

{c) 2-TFA (only states) (b) DFA (For simplicity, some less important transitions are omitted)
Driver Mode
e N C-uise_system="on"
Cruising ‘]

target_speed=0, car_speed=0 &< 240, l
=" i " i control_state="Inactive_st", k M M d . Xu et al. 2014
et anidlil [”w network intrusion detection | :
car_sp=ed=target_speed . \speed control state="disable"
Cruisz_system="on |
iCar_speed —, \

Break
v

terget_speed=0, car_speed=0 &< 240,
control_state="Iractive_st",
cruise_system="off",
speed_control_smate="disable",

switch kev="off"

control systems [Saifan&Mustafa 2014]

Cruise_system="off"

Cuise Stendby

Cruise_system="off"

Target_speed=0, car_speed=08&< 24C,
contro _state="standby_st",
Qneed control state="disable”

Signa[processing tools [Lehane et al. 2016]

FINITE STATE MACHINES (FSMS)

M

H [y
M L

fé M H
@@

TESTING FSMS

Functional (black-box) testing

FSM

¢ o

1. Generate the test inputs
2. Execute the tests
3. Check the results

GENERATING TESTS

based on coverage criteria
All-state coverage:
e MLMH ->0001

X weak fault-finding [Briandetal. 2004]

GENERATING TESTS

based on coverage criteria
All-transition coverage:

e HLLMMH -> 000001
e MLH->001

X weak fault—finding [Briand et al. 2004]

GENERATING TESTS

based on coverage criteria
All-transition pair coverage:

e HLLMMH -> 000001
e MLH ->001
e LMH ->001

v strong fault—finding [Briand et al. 2004]

THE PROBLEM

Some finite state machines:

@ states and transitions

@ test sequences

hours to execute

OUR APPROACH

Execute the tests in parallel on the GPU.

e Cheap and widely available ¢ Provide thousands of thread

Transfer FSM & test inputs

/\

FSM Device

(GPU)

Tests ——

\/

Transfer results Execute tests

in parallel

one GPU thread = one test

WE HAVE DONE IT BEFORE

for testing embedded C programs.

Compiler-Assisted Test Acceleration on GPUs
for Embedded Software

Vanya Yaneva Ajitha Rajan Christophe Dubach
School of Informatics School of Informatics School of Informatics
University of Edinburgh, UK University of Edinburgh, UK University of Edinburgh, UK
vanya yaneva@ed.ac.uk arajan@staffmail ed.ac.uk christophe.dubach@ed.acuk
ABSTRACT ACM Reference format:

Embedded software is found everywhere from our highly visible
mobile devices to the confines of our car in the form of smart
sensors. Embe
produce safe
critical ta alle
requires using
increasing tin
Speeding 1
tance for embi
by running, i

Vanya Yaneva, Ajitha Rajan, and Christophe Dubach. 2017. Compiler-Assisted
Test Acceleration on GPUs for Embedded Software. In Proceedings of 26th

Tnrormatiannl Sumnacium an Safruars Tocting and Analucie Santa Ravhars

putess. Hawe ParTeCL: Parallel Testing using OpenCL*

maintenance ;
developers ha Vanya Yaneva Ajitha Rajan Christophe Dubach
resource.

‘We propos University of Edinburgh, UK University of Edinburgh, UK University of Edinburgh, UK
Units) for rur vanya. yanevafied.ac.ul arajan@staffmail.ed.ac. uk christophe.dubach@ed.ac.uk
available inm
Letism, malkin ABS’IILACT scution time of the entire test

In this paper,
tions of embe
a GPU, withor
approach wh

arge test
enoFmous pressure

eyele.

nique, we ack

n the software development
revious work, we proposed using Graphics Pro-
kemels for p: cessing Units (GFUs) to accelerate test execution by running

iPU threads. However. the

them concurrently to reduce

T castly in terms of resources,
msumed. Present
ics Pro-
nits :(PUs), offer enormous computing power while
cheap, easily available and energy efficient. A
U offers thousands of parallel threads with the po-

the number of u-n
tremely large
d time consuming,

s

r, GPUs are notoriously hard to program and require

CPU executio poses challenges to the
standard emb usability and effectiveness of the proposed approach. ant expertise and a thorough understanding of the
In this paper we present ParTeCL - a compiler-assisted e and programming model to unlock their potential.
framewark to autamatically ge 3PU code from se plan to address these problems in the context of test
CCS CONi tial programs and execute their tests in parallel on th ezecution using our ParTeCL framework. ParTeCL has the
. Software a We show feasibilitiy and performance achieved whe following goals,
bugging, Sor ing test suites for O programs from an industry standard (1) Increase the usability and feasibility of GPUs for
e bene lunatk suite on the G *arTeCL achieves an average test execution
speedup of 16 when compared to a single CPU for these (2) Increase the performance and effectiveness with

benchmarks.

CCS CONCEPTS

KEYWOR

Functional te
mated testing

eSoftware and its engineering —Software testing and debug-
ging; Source code generation; sComputer systems organiza-

compiler optimisations that analyse the tests and
the program.

Our recently accepted paper [10] in the main research track

STA 20 e al evaluations of our approach

ISSTA'17

Max. speedup 53x (avg. 16x)
= on 9 subjects from
EEMBC embedded benchmark suite
= when compared to a single CPU

Completely automated parallel testing on the GPU

@ ParTeCL e ParTeCL Test

C Program @ i — OpenCL— RIS —> execution
on the GPU

In our current work we extend ParTeCL Runtime,
providing a completely automated process.

FSMS ARE DIFFERENT TO C PROGRAMS

FSM execution involves a lot of memory accesses.

Slow, unless coalesced access Fast

Global memory Confrte:r(;forzleyr;\ory

Local memory

A

A 4

Fast

Local memory

Thread 1

!

Thread N

!

Private
memory

Private
memory

Thread 1

!

Private
memory

Thread N

!

Private
memory

Work group 1

Work group M

e FSM and tests are in global memory.
e FSMis in constant memory (if it fits).

To improve performance we need:

compact representation AND/OR coalesced access

We investigate 2 FSM memory layouts and 3 test memory layouts.

RESEARCH QUESTIONS

RQ1: Test execution speedup
What is the speedup on the GPU, compared to a 16-core CPU?

RQ2: FSM layout

Does the choice of FSM layout influence the speedup?

RQ3: Test layout

Does the choice of test layout influence the speedup?

RQ4: Sorting the tests based on length

Does sorting the tests influence the speedup?

EXPERIMENT SUBJECTS

FSM Domain #States #Inputs #Tests
ssl intrusion detection (17-filter) 34 256 1475 251
battlefield? intrusion detection (17-filter) 71 256 1476 796
dns intrusion detection (17-filter) 197 256 8 533 671
aim intrusion detection (17-filter) 41 256 1 344 963
rtp intrusion detection (17-filter) 28 256 1536 723
tsp intrusion detection (17-filter) 27 256 1162 511
yahoo intrusion detection (17-filter) 54 256 2 627 405
ntp intrusion detection (17-filter) 31 256 1374 296
hotline intrusion detection (17-filter) 34 256 1216 433
h323 intrusion detection (17-filter) 46 256 2 241 832
halflife? intrusion detection (17-filter) 24 256 1 088 409
counterstrike-source intrusion detection (17-filter) 30 256 1472 463
keysight digital signal processing 4004 3 36 027

Tests generated based on all-transition pair criteria.

Speedup compared to 16-core CPU

—_

O NWHR IO IO O

counterstrike

hotline
halflife2
h323

ntp
battlefield2

RQ1: TEST EXECUTION SPEEDUP

using the fastest configurations for GPU and 16-core CPU

I it -0 12 < keysight
e Ak
./‘/ e P
_/.‘ ~= - —-® ,*’ -
K
//*-—-__*// — A A ——— A

212 214 216
Number of tests (log base 2)

Number of tests (log base 2)

Max. speedup 12x (avg. 6.4x)

218

220

RQ2: FSM LAYOUT IN MEMORY

L, B1,0

M, BO, O

H, BO, O

L, B1,0

M, B2, 0

H, B3, 1

fe

M, B2, 0

H, B3, 1

e X expensive search for each test input

Sparse
e v compact encoding

Yoo

Bl, O | BO, O | BO! 0
Bl, O | BZ, 0 | 831 1
padding— B2,0 — B3,1
padding — padding — padding
Dense

e v constantsearch for each test input
e X padding adds memory overhead

Speedup compared to 16-core CPU

s

(%]

2

[a—

RQ2: FSM LAYOUT IN MEMORY - RESULTS

B Sparse
.

Dense 4

oL hoﬁ\(\e’ ane \{3}1’5 xo®

.%e.\s& \&e'l (\xﬂ)

éﬂ‘.
o“‘e‘
o

o

Max. speedup 4.2x

RQ3: TEST LAYOUT IN MEMORY

Contiguous memor>y Contiguous mem:ry
g qens Tl T2 TN
T1 .-:..-i.-i Tl T2 TN
T2 et o Ik m
offsets
. o|k|-:|m
™ L o
Padded Padded-transposed With-offsets

e v easytoimplement e X no memory coalescing
e X padding adds memory overhead e v memory coalescing e v compact layout

e X no memory coalescing

] = o o] =1 o0

Speed up compared to 16-core CPU

[i—

RQ3: TEST LAYOUT IN MEMORY - RESULTS

BN padded .

B padded-transposed

BN with-offsets /
G
5
4

o]

[S]

[a—

0 O L e
. x° P ~ \ e‘;\é‘ 0‘3\-:\ ﬁﬁ\@e o “Q«r«

c.°°

Max. speedup 7.8x

RQ4: SORTING TESTS BASED ON LENGTH - RESULTS

o 12 padded padded-transposed with-offsets 12

o

1l W unsorted WM unsorted B unsorted 11
10 B sorted B sorted W% sorted 10

-1 o Do
=1 oo 2

)

Speed up compared to 16-core

— [] = L

Max. speedup 12x (avg. 6x)

SUMMARY

GPUs can accelerate functional testing of FSMs.

iﬂ Speedup compared to 16-core CPU is max. 12x (avg. 6x)
with optimised FSM/test layout and load balancing.

g:é} We have automated the process.

0 github.com/wyaneva/partecl-runtime

REFERENCES

1. [Saifan&Mustafa 2014] Using Formal Methods for Test Case Generation According to Transition-Based Coverage
Criteria - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Cruise-control-
system-finite-state-machine-diagram_fig2_283902282 [accessed 4 Dec, 2018]

2. [Xu et al.2014] Xu, Yang et al. TFA: A Tunable Finite Automaton for Pattern Matching in Network Intrusion
Detection Systems. IEEE Journal on Selected Areas in Communications 32 (2014): 1810-1821.

3. [Lehane et al. 2016] Lehane et al. Digital Triggering Using Finite State Machines. US Patent App. 14/957,491.
March 2016

4. [Briand et al. 2004] Briand et al. Using Simulation to Empirically investigate Test Coverage Criteria Based on
Statechart. In ICSE 2004

